Tuning of spin-lattice coupling in cobalt difluoride Thomas Metzger¹, Mikhail Prosnikov^{2,3}, Kirill A. Grishunin¹, Roman M. Dubrovin², Sergey Kovalev⁴, Jan-Christoph Deinert⁴, Clément Faugeras⁵, Chris Reinhoffer⁶, Roman V. Pisarev², Paul H. M. van Loosdrecht⁶, Alexey V. Kimel¹, and <u>Evgeny A. Mashkovich^{6,*}</u> Recently, we have shown that the excited antiferromagnetic spins can mediate nonlinear coupling between THz light and a lattice [1]. High-intense THz pulse resonantly interacts with a coherent magnon state (38 cm⁻¹ at T = 5 K) in CoF₂ and excites the Raman-active B_{1g} phonon (65 cm⁻¹ at T = 5 K). The phonon amplitude scales quadratically with the THz field strength clearly evidencing the nonlinear excitation mechanism. Interestingly, that the phonon amplitude reaches maximum near a special temperature (T = 30 K) at which the magnon frequency matches half of the phonon frequency. Moreover, we have performed measurements combining high-intense THz pulses and high static magnetic fields. The B_{1g} phonon excitation shows resonance behaviour while tuning the frequency of the magnon with the help of external magnetic field [2]. Interestingly, the magnon frequency at this resonance (static field of ~ 4 T) is close to earlier mentioned frequency matching condition: the magnon frequency matches half of the phonon frequency. The results demonstrate that the magnon-phonon coupling mediates THz light-driven phonon excitation. ## References - [1] E.A. Mashkovich et al., Science 374, 1608 (2021). - [2] A.G. Gurevich and G.A. Melkov "Magnetization Oscillations and Waves", CRC Press, 464 pp (1986). ¹ R adboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen, The Netherlands ² Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St Petersburg, Russia ³ High Field Magnet Laboratory (HFML–EMFL), Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands ⁴ Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany ⁵ Grenoble High Magnetic Field Laboratory, CNRS, BP 166, F-38042 Grenoble Cedex 09, France ⁶ Institute of Physics II, University of Cologne, Cologne, Germany ^{*}mashkovich@ph2.uni-koeln.de