

Evolution of underground science in LSM

Laboratoire Souterrain de Modane From digging to modern experiments

Laboratoire Souterrain de Modane

- Located in Modane, France
- Middle of Fréjus tunnel
- Part of LPSC; Lab in Grenoble

- National facility for underground science
- 1000 visitors days per year
- Wide range of interdisciplinary topics
- Astroparticles, nuclear physic, environment, electronics, radioactivity measurement, biology

Laboratoire Souterrain de Modane

- Merger with Laboratoire de Physique Subatomique & Cosmologie (LPSC-IN2P3) in Grenoble
 - 70 researchers, 90 Engineers & technicians
 - Covering fields in particle & nuclear physics, astroparticle and cosmology
- LSM now becomes a « national facility » as labelled by the CNRS
 - National facility for IN2P3 / CNRS
- LSM as a national experimental facility for :
 - Fundamental Physics
 - Neutrino property determination
 - Direct Dark matter search
 - Gamma spectrometry measurement
 - 14 detectors measuring continuously
 - Open to geosciences, materials, biology and medecine
 - Actually 1000 samples measured per year
 - PARTAGe project to automatize measurments
 - Increase significantly the scope of the LSM

Location and access

History of LSM

Digging

Proton decay

- 2.10⁻⁶ n/cm².S
- 4 μ/m².d
- 3500m³
- 400m²

Prototypes ----- Experiments

- 15Bq/m³ Rn in air
- Radonless air 125m³/h 15mBq/m³

Double beta decay

 $bb0n: (A,Z) \rightarrow (A,Z+2)+2e^{-}$

Full electron energy

 $< m_n > \Rightarrow$ mass hierarchy

SuperNemo experiment

Unique tracker-calorimeter technology

Segmented calorimeter

Individual e^- & γ energies

Tracker

Identification of e^- , e^+ , γ and α Full $\beta\beta$ **kinematics** & topology

- Excellent background rejection
- Disentangle $\partial v \beta \beta$ mechanisms: V+A, SUSY...
- Nuclear physics: constrain g_A in $2\nu\beta\beta$
- *e*-γ separation probes decays to excited states

SuperNemo experiment

Magnetic coil for particle ID (Installed Sept 21)

Energy and timing calibration

Timing resolution (main calorimeter) with 60 Co γ coincidences

Energy calibration (each optical module) with background spectrum

Tracker + calorimeter commissioning: First $\beta\beta$ -like event !

- Tracker-calorimeter coincidences
- Full event tracking

SuperNemo experiment

Full kinematics and precision measurements of $2v\beta\beta$

- Nuclear model constraints
- g_A quenching constraints (NEMO-3 analysis in preparation)

Understanding the Ultimate Reach of the Tracker-Calorimeter Technique

- Can the technique be used to confirm & probe a signal found in the next generation of *θvββ* experiments?
- Explore alternative tracker-calorimeter technologies & different isotopes

CupiD -Mo

- \bullet Demonstrator for CUPID, a next generation tonne scale $0\nu\beta\beta$ experiment
- Consists of 20 Lithium Molybdate bolometers and 20 Ge Light detectors
- Operated in LSM in 2019-2020
- Showed performance very close to CUPID goals
 - Radiopurity
 - Energy resolution
 - Detection efficiency

Cupid Mo

- Not just a demonstrator but an experiment in its own right
- $\bullet\,$ New leading limits on $0\nu\beta\beta\,^1$ and beta decays to excited states

$$T_{1/2}^{0\nu} > 1.8 \times 10^{24}\,\rm{yrs}$$

- Novel analysis techniques developed (delayed coincidence, pulse shape, light cuts)
- Background model and other analyses nearing completion

n Guillaume Warot

Bingo

- BINGO will set the grounds for a large scale bolometric experiment searching for neutrinoless double-beta decay (0v2β) using revolutionary technologies
- It aims to reduce dramatically the background in the region of interest, through:

A revolutionary detector assembly:

- Reduce the Cu material seen by the main absorber → reduction of the total surface radioactivity contribution
- Having a compact assembly → anticoincidence cuts

Neganov-Luke light detectors:

- Amplification of the tiny Cherenkov signal (TeO₂) \rightarrow suppress alphas
- Higher sensitivity, lower energy threshold \rightarrow suppress external γ background using the active shield

An active shield based on BGO or ZnWO₄ scintillators:

Suppress the external gamma background (specifically essential for TeO₂)

Bi-Isotopic approach: observation in 2 candidates \rightarrow discovery + confirmation

Bingo Nylon wire assembly

- Two 45mm cubic Li₂MoO₄ crystals fixed against PTFE pieces using nylon wire
- The PTFE pieces sandwich also Ge light detectors
- The test successfully validated the nylon wire assembly in terms of bolometric performance

Performances	S (nV/keV)	FWHM bsln (keV)	FWHM @ 609 keV
LMO	58	4.9	7.2

The bolometric performance was promising. 2 detectors modules (4 Li_2MoO_4) will be tested underground before moving to **MINI-BINGO**:

- new low-background cryogenic infrastructure at LSM
- 6 modules of Li_2MoO_4 and 6 modules of TeO_2 to be tested at LSM starting in 2023
- The physics volume is surrounded by 16 scintillating crystals on the lateral, 4 on the top and 4 on the bottom acting as an active shield
- 1-year run starting in 2024 to reach b=10⁻⁴ c/keV/kg/y

Dark matter search

- Major physics goal
- Direct detection would answer to a lot of question
- WIMP candidate is a target for underground detection

CMB anisotropy

EdeLWEISS Status

- Study of low-energy events not associated with charge: dominant "Heat-Only" background at HV. (arXiv:2112.05467, and EXCESS2021 arXiv:2202.05097)
- New CRYOSEL R&D (CRYOSEL ANR, 2022-2024): single electron tag using NbSi microwire to trigger on athermal NTL phonons produced in small acceleration region just below the sensor
- Physics run @LSM in 2023-2024 in ERC, 2020-2025)

Bingo cryostat (BINGO

CRYOSEL: physics reach of LSM run of 40g detector x 1 month, with single-electron tag

Damic-M

- CCDs for direct dark matter search.
- Multi-CCD array operating at SNOLAB since 2012.
- 50x more sensitive DAMIC-M will start operations at LSM in 2024.
- DM-e⁻ interactions:
 - First DM search results from ~eV ionization signals: PRL 118 (2017) 141803
 - Latest DM-e- scattering results: PRL 123 181802 (2019)
- WIMP search:

PRL 125 (2020) 241803

11 kg-day of data from seven-CCD array.

First full background model in CCDs.

Full details: PRD 105 (2022) 062003

SHIN

- Super heavy element with half life >²³⁸U
- Z=108 targeted with self fission producing >5n

Nuclear physicsSuper Heavy Element In natureSHIN (osmium ore surroundedby 3He neutron detectors)

Events	Single	Double	Triple	Quadruple
Measured 550g Os	1 ev/ minute	1 ev./ 10days	2 events	1 event
Random events (100µs)		2 ev/ year	0 ev/ year	0 ev./ year

From these results, we can deduce an upper limit of 10^{-14} g/g for the concentration of EKA-Os super-heavy element in Osmium (with a sample of 550 g sample of Os and assuming a half-life of ~ 10^9 years for this EKA-Os)

This leads to a limit of the mean concentration of EKA-Os of **10**⁻²²g/g in the earth crust

Guillaume Warot

Low radioactivity constraints

- Requirement on material below mBq
- Strong pressure on analytical capabilities
- Increased number of pieces and longer time
- Main measurement performed by gamma ray spectrometry
- Constant effort took place in LSM to develop ultra low background germanium
- Hosting 22 HPGe by 2020

High purity germanium

- Semi conductor crystal cooled down to 77 K
- Sample at room temperature
- Sensitive to gammas from 20keV up to 3MeV
- Non destructive measurement
- Sensitive to muons and cosmic activation
- Different detectors adapted to samples shape

Future of measurement at LSM

- PARTAGe project
 - Combining shields in common walls

- Robotisation
- Optimisation of measurement time based on the radiopurity objectives

Shielding in progress

🐂 Guillaume Warot

Germanium facility

• Example of detection limits

Mafalda : (our swiss army knife)

- Size 150 cc 43,1%
- Resolution
- Background

- Ф 80mm h 31,7mm
- 122 keV 920 eV
- 2 1,33MeV 1,97keV
- Integral 115±3,5 count/day
- 133 c/kg
- Peaks
- 46,5 keV 1,49 ± 0,37 c/d [210Pb]
- 75 keV 3,6 ± 0,62c/d [Pb]

Guillaume Warot

Shielding

Silicon wafer measurement 700 000s 650g

Nucleide		Bq/kg
210Pb	<	1,58E-02
²²⁶ Ra	<	1,27E-03
238U	<	6,27E-03
228Ra	<	3,82E-03
228Th	<	8,66E-04

Germanium facility

• Improving detection limit :

- Imply choices :

This detector can welcome much bigger sample but the low energy gamma are stopped by the dead layer around the detector.

Nucleide		Bq/kg
210Pb		NA
²²⁶ Ra	<	4,96 ^E -4
238U		NA
228Ra	<	1,78E-03
228Th	<	4,37E-04

Obélix :

Theoretical sample of 1kg for 50000s

- Size
 - 600cc-160%
- Background
 - 95 counts/kg.d
- Resolution
 - 122 keV 1,1 keV
 - 1,33MeV 2keV

Sample Chamber

Decay mode	Final state or Decay transition	T _{1/2} , (90% CL)	Previous limits, T _{1/2}
β+ΕC	g.s.	1.7×10 ²² y	7.0×10 ²⁰ y (68%CL)*
β+EC	811 keV	2.3×10 ²² y	4.0×10 ²⁰ y (68%CL)*
EC/EC	811 keV	3.3×10 ²² y	4.0×10 ¹⁹ y (90%CL)**
EC/EC	1675 keV	3.4×10 ²² y	4.0×10 ¹⁹ y (90%CL)**
0vEC/EC	Radiative		
resonant	1918 keV	4.1×10 ²² y	2.1×10 ²¹ y (90%CL)***

*S.I. Vasil'ev et al., JETP Lett. 57 (1993) 631.

**E. Bellotti et al., Lett. Nuovo Cim. 33 (1982) 273.

***B. Lehnert et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 065201

N.I.Rukhadze (JINR, Dubna)

IRSN

ET DE SÛRETÉ NUCLÉAIRE

Analitycal power for interdiciplinarity

- Possibility to measure a wide range of nucleides
- Used in many environmental datation

 $222 Rn \rightarrow 210 Pb$ 238U $238U \rightarrow 226 Ra \rightarrow 222 Rn$ $226 Ra \rightarrow 222 Rn \rightarrow 210 Pb_{supporté}$

$$({}^{210}Pb)_{ex}^{t} = ({}^{210}Pb)_{ex}^{0} \times e^{-\lambda t}$$

$$Ln(^{210}Pb)_{ex}^{t} = -\lambda \frac{z}{V} + Ln(^{210}Pb)_{ex}^{0}$$
Guillaume Warot

Relative datation

Absolute datation

¹³⁷Cs + ²⁴¹Am 1963

> ¹³⁷Cs only 1986

Lake survey

• 210Pb gives the sedimentation rate

Ice survey

- Datation of ice core in antartica
- Calibration of radar
- Temporal marker for climate change
- 2 days measure needed in underground lab

Erosion survey

Sources of sediment in mining catchments of New Caledonia

Two main sources of sediment to the main river **Non-mining**

137

iver Non-mining tributaries Mining tributaries

- Discrimination of contributions of both types of tributaries based on their activities in natural/artificial radionuclides
- Quantification using mixing models
- Analysis of sediment cores collected in the delta to reconstruct changes in source contributions with time

Millesime identification

CHATEAU MARGAUX 900 ARTON & GUESTIEN BORDEAUX

Biology at LSM

- Evolution driven by radiation
- Comparison between surface and underground bacteria culture 800 generations harvested

Stem cell storage

- LSM-pasteur institute collaboration
- Funded by interdisciplanary mission from CNRS
- Allowed to test a stem cell storage shielded from natural radioactivity and terrestrial cosmic rays
- Patented solution
- Publication in progress
- P. ROCHETEAU, G. WAROT, M. CHAPELLIER, M. ZAMPAOLO, F. CHRETIEN et F. PIQUEMAL – Cryopreserved Stem Cells Incur Damages Due to Terrestrial Cosmic Rays Impairing their Integrity Upon Long-Term Storage, Cell Transplantation, 2022.

Conclusion

- Underground labs are designed for large scale fundamental physics
- Unique environment find always a use sometimes unforeseen at digging
- Leaves room for interdisciplinary program at moderate cost
- New fields and discoveries made possible by the access to low level radiation environment

