

www.scionix.nl

P. Schotanus

Developments in low level scintillation detector technology

Scintillation Detectors :

Instruments using inorganic scintillation crystals or organic scintillators (plastics/ liquids)

Radiation + Crystal

Light

Electrical signal

SCIONIX:

Designs and manufactures scintillation detectors and - probes for many different applications.

"Classic" scintillation detector

Direction interaction (semiconductors, HpGe, CdTe, Gascounter)
 Indirect via Light

Scintillation detectors : standard tools in many disciplines

- Medical (SPECT/PET/CT) : Imaging, density
- Health Physics : Dose (particles, photons, neutrons)
- Security (finding/identifying sources) : spectroscopy (luggage scanners/imaging)
- High Energy Phyics (HEP) : particles, photons, calorimetry
- Nuclear Physics : Gamma rays spectroscopy / timing
- Geology: finding U, Th via spectroscopy,
- Mineral exploration (density, PNGA elemental analysis)
- Oil industry (density, well logging, PNGA)
- Space (gamma) spectroscopy, neutrons

Radiation Energies from keV to GeV, temperatures from -40 to +200 C, from laboratory to space environment...

EACH DISCIPLINE has a vastly different requirements,

Material	Dens ity (g/c m ³)	Emission Maximum (nm)	Decay Constant (1)	Refracti ve Index (2)	Photo- electron yield (3)	Hygroscopi c
Nal(TI)	3.67	415	0.23 µs	1.85	100	ves
CsI(TI)	4.51	550	0.6/3.4 μs	1.79	45	slightly
CsI(Na)	4.51	420	0.63 µs	1.84	85	yes
Csl(Undoped)	4.51	315	16 ns	1.95	4-6	no
Cs₂LiYCl ₆ :Ce (CLYC)	3.31	370	1/50/1000 ns	1.81	30-40	yes
CaF ₂ (Eu)	3.18	435	0.84 µs	1.47	50	no
Cs ₂ LiLaBr _{4.8} Cl _{1.2} :Ce (CLLBC)	4.08	420	120 ns 500 ns	1.90	70	yes
Srl ₂ (Eu)	4.60	450	1-5 μs	1.85	120-140	yes
LaBr _{2.85} Cl _{0.15} :Ce (LBC)	4.90	380	35 ns	1.90	140	yes
⁶ Li-glass	2.6	390	60 ns	1.56	4-6	no
⁶ Li(Eu)	4.08	470	1.4 µs	1.96	35	yes
BaF ₂	4.88	315 220	0.63 μs/ 0.8 ns	150 1.54	16 5	no
LaBr3:Ce	5.03	380	20-25 ns	1.90	140	yes
CeBr ₃	5.23	370	18-25 ns	2.09	130	yes
YAP(Ce)	5.55	350	27 ns	1.94	35-40	no
Gd ₃ Al ₂ Ga ₂ O ₁₂ :Ce (GAGG)	6.60	520	100 ns (average)	1.85	35-40	no
LYSO:Ce	7.20	420	50 ns	1.82	70-80	no
BGO	7.13	480	0.3 µs	2.15	15-20	no
CdWO₄	7.90	540	20/5 µs	2.3	25-30	no
PbWO ₄	8.28	420	7 ns	2.16	0.20	no
Plastics(+ organics)	1.02 3	375-600	ns range	1.58	25-30	no

List of commercially available scintillators is extensive.

Many different parameters (speed, brightness etc. etc,_

CELLAR 2022 Dresden 29 Nov 22

Many materials are hygroscopic \rightarrow encapsulation is needed

What is low level spectroscopy counting ?

- standard 10 cm lead shield ?
- Underground ?
- With Muon shielding?
 - Energy window ?
 - "ultra" ?

The quesion : "I need a low background detector needs to be specified",

Usually a parameter like "minium detectable is here the "keyword" This related to energy resolution (gamma-ray spectroscopy)

How well or quickly or at all can we detect a small line in a gamma ray spectrum (example shows 511 keV)?

What is high resolution ?

Usually we refer then to energy resolution of scintillators

HpGe detectors (direct interation devices) : approx. 2 keV over energy range from keV to MeV. Superb energy spectrum .

 HpGe = REAL high resolution

 In % :

 59.5 keV (241 Am) :

 3122 keV (57 Co) :

 122 keV (57 Co) :

 1662 keV (137 Cs) :

 01332 keV (60 Co) :

The very best scintillators ("high" energy resolution) offer

59.5 keV (²⁴¹Am) 122 keV (⁵⁷Co) 662 keV (¹³⁷Cs) 1332 keV (⁶⁰Co) 7 % (Nal(TI) / LBC/LaBr3 6 % LBC LaBr3 /Srl₂(Eu) 2.5 %LBC/LaBr3 1.5 % LBC/LaBr3

CELLAR 2022 Dresden 29 Nov 22

Origin of intrinsic background in scintillation materials

- Crystal material
- Sealing material (special epoxies)
- Housing material
- Reflector material
- Optical window
- Light detector

Best low background scintillators :

Nal(Tl) Srl₂(Eu) Organics

Large size possible only small size (100 cc) large size possible

When you bring a scintillation sensor inside a shielding you will increase the background due to the presence of above materials.

Extreme high background scintillators :

L(Y)SO 250 c/s/cc betas (up to 1 MeV)

Lanthanum halides (about 1-2 c/s/cc (betas/gammas) + Ac-2227 alphas LaBr3 LBC CLLBC

BGO (used for Compton suppression shields has background)

0.6, 1 and 1.6 MeV lines due to activation by cosmics

0.01 - 0.02 c/s/cc (Net in peaks)

Of the high resolution scintillators, **CeBr₃** as lowest background of 0.002 c/s/cc in the Ac-227 peaks Otherwise clean.

Sealing materials

There is little improvement possible since the number of epoxies qualified to seal metals to glasses is limited. No compromise possible

Housing materials/windows

Stainless steel or OHFC copper are the best option but prevent X-ray detection. Beryllium can be relatively radiopure

Optical windows light guides / reflectors :

- Quartz (fused silica) is always used also for optical transission
- Reflectors of qualified Al2O3 powder or PTFE have proven to be fine

Light detectors :

Classic PMTs contain glass, glass joints, lots of metals.....

The use of silicon technology allows higher wavelength emitting scintillators; PMTs dictated an emission in the 400 nm region.

ADVANCES in scintillation light detection

PMTs (PIN) Diodes Avalanche Photodiodes (APDs) (EM) CCDs Si-PMs (MPPCs)

CELLAR 2022 Dresden 29 Nov 22

Range of possibilities for readout of scintillation light :

PMTs

- Made of glass (fragile + K-40 background)
- Large signals, good S/N ratio, fast (ns)
- Large dimension, low price per cm²
- Sensitive to B fields
- Existing old technology (vacuum tubes)

PMTs

- (PIN) Diodes
- Avalanche Photodiodes (APDs)
- (Drift Diodes)
- (EM) CCDs
 - Si-PMs (MPPCs)

PIN diodes

- No amplification (small signals)
- Maximum cm size
- Stable (temperature)

CCDs :

- DC measurement mostly
- Imaging
- For higher radiation fields

APDs

- Amplification 100-1000
- rather Unstable (temp)
- rel expensive, small (max 10x10mm)

Silicon Photomultipliers (SiPMs, MPPCs)

Silicon photomultipliers

Large improvement of SiPms since last years does open up many possibities :

- Higher PDE
- Lower noise

PRO's

- Large gains (10⁶), fast
- Affordable cost (6x6 mm< 50-100 €) (mass production process)
- Higher basic QE than PMTs : Si
- Low voltage (30-70 V) e.g. ATEX
- Compact

CON's

- high price per cm²
- filling factor
- pixel saturation easy (fast bright scintillators !)
- temperature dependent gain rel. large (-1-2 % / °C)
- Noisy !

Price per cc much higher than PMTs !

Readout of crystal pixels with SiPm obvious :

Med. Imaging (WLS) Fibers

SiPm readout becomes mature :

New ranges of sensors are developed : Small size Low voltage

SiPm technology can also be applied to "neutron scintillators"

51 mm cubic CeBr₃ orn 51 x 51 mm SiPm array : 4.0 % FWHM * 662 keV)

= PMT Comparable

Temperature compensated bias generators / preampifier can compensate for the SiPm gain drift

However, noise increases approx. 5-fold from 20 to 60 C

Careful choice of No. Of SiPms on every scintillation module needs to be made to optimise s/n. More SiPms more noise....

200x120x10 mm plastic scintillator with 25x10 mm readout surface CELLAR 2022 Dresden 29 Nov 22

The new generation scintillator / Sipm detectors

- Compact
- Low power (5 V , 5 mA)
- Built-in temperature compensated bias generator / preamplifier
- PMT readout comparable energy resolution
- Wide choice of scintillator

Nal(TI)

BGO

Also Alpha/beta detectors with SiPm readout are developed.

Nal(TI) well detectors with SiPm readout

- Compact, easy to shield
- SiPm temperature compensated
- Low power
- Many digital MCA compatible
- Noise < 10 keV (20 C)

CELLAR 2022 Dresden 29 Nov 22

With SiPm readout of scintillators one can :

- 1. Remove the relatively high background PMT (metals, glass)
- 2. Reduce the amount of hardware (smaller lighter, less metals)
- 3. Operate the sensor at +5 V

Complete Compron suppression shields with SiPm readout

Compton suppression is about "background" due to scattering There is also background due to :

A. Internal contaminationB. Cosmic ray background

All you wil bring with a HpGe inside a shielding will increase the background !

Use pure materials, low background PMTs and other materials !

BGO shields have more background due to intrinsic activity of BGO For low background systems, NaI(TI) is better.

Α

Cosmic (muon) background on a HpGe spectrum can be eliminated by Mounting plastic scintillation panels outside of Lead shielding

Cosmic muons Produce signals in the 3 MeV + region

Up to 1000 mm , SiPm readout is also possible but does not lead to lower cost.

Plastic scintillator muon shield are usually custom made and mounted outside the Lead shielding

A few final remarks

- 1. What a manufactuer can measure with respect to background is limited. we do select materials and use some recipes....
- 2. Many newly developed high resolution crystals are not at all "low background"
- 3. SiPm readout of scintillators opens some possibilities. Performance at room temperature comprable to PMTs these days.

Thanks for your attention