

RECENT ACTIVITIES IN THE UNDERGROUND LABORATORY FELSENKELLER

Detlev Degering, VKTA

Location, Characterisation, Methods, Equipment

Location:

- Cellars of a former brewery used for storage of ice
- laboratory founded in 1982 (NAA)
- > \approx 140 m w.e. overburden (\approx 45 m of rock)
- Monzonite (low quartz content): ²³⁸U 100 ... 230 Bq/kg ²³²Th 100 ... 210 Bq/kg ⁴⁰K 400 ... 1300 Bq/kg
- ➤ Tunnel: ²²²Rn 130 ... 500 Bq/m³(↑ since 2018)
- Measuring chambers:
 - MK1: old steel + serpentinite (I.3 Bq/kg ²³⁸U, 0.3 Bq/kg ²³²Th, 6 Bq/kg ⁴⁰K)
 - MK2: 28 cm steel + 5 cm old steel + 3 cm "boliden" lead

Location, Characterisation, Methods, Equipment

Location:

- Cellars of a former brewery used for storage of ice
- laboratory founded in 1982 (NAA)
- > \approx 140 m w.e. overburden (\approx 45 m of rock)
- Monzonite (low quartz content): ²³⁸U 100 ... 230 Bq/kg ²³²Th 100 ... 210 Bq/kg ⁴⁰K 400 ... 1300 Bq/kg
- ➤ Tunnel: ²²²Rn 130 ... 500 Bq/m³(↑ since 2018)
- Measuring chambers:
 - MKI: old steel + serpentinite (I.3 Bq/kg ²³⁸U, 0.3 Bq/kg ²³²Th, 6 Bq/kg ⁴⁰K)
 - MK2: 28 cm steel + 5 cm old steel + 3 cm "boliden" lead

Location, Characterisation, Methods, Equipment

Location:

- Cellars of a former brewery used for storage of ice
- laboratory founded in 1982 (NAA)
- > \approx 140 m w.e. overburden (\approx 45 m of rock)
- Monzonite (low quartz content): ²³⁸U 100 ... 230 Bq/kg ²³²Th 100 ... 210 Bq/kg ⁴⁰K 400 ... 1300 Bq/kg
- ➤ Tunnel: ²²²Rn 130 ... 500 Bq/m³(↑ since 2018)
- Measuring chambers:
 - MK1: old steel + serpentinite (I.3 Bq/kg ²³⁸U, 0.3 Bq/kg ²³²Th, 6 Bq/kg ⁴⁰K)
 - MK2: 28 cm steel + 5 cm old steel + 3 cm "boliden" lead

Detlev Degering

29 November 2022

Location, Characterisation, Methods, Equipment

Characterisation :

- Cosmic radiation, muon component:
- reduction of muon flux in vertical direction: \approx factor 50
- 0 inhomogeneous spatial distribution
- reduction of surface flux in total: \approx factor 30 ... 40 (position dependent)

> Neutron flux:

- \circ (µ,n) reactions and (α ,n) reactions from rock
- 0 energy range: thermal ... > 10 MeV
- neutron flux at different locations:
 0.65 ... 4.6 · 10⁻⁴ cm⁻² s⁻¹, depending of the surrounding shielding material

Ludwig, F. et al.: The muon intensity in the Felsenkeller shallow underground laboratory, Astroparticle Physics 112 (2019) 24 - 34

Grieger, M. et al.: Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated ³He counters, Phys. Rev. D 101 (2020) 123027

Location, Characterisation, Methods, Equipment

Methods:

- Iow-level gamma spectrometry (2000 samples per year)
- Iow level tritium analyses (300 ... 400 samples per year)
- analytical services for:
 - \checkmark consumer protection (spring & tap water, medical ceramics, food, ...)
 - ✓ radiation protection & monitoring (abandoned uranium mining sites, deep geothermal energy ...)
 - ✓ science (luminescence dating in geology & archaeology, hydrogeology
 ...)
 - ✓ decommissioning of NPPs (determination of nuclide vectors ...)

Wagner, G.A. et al. (2010): Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany; PNAS **107** 19726–19730

Degering, D., Köhler, M. (2009): Langfristige Betriebssicherheit geothermischer Anlagen, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Förderkennzeichen 0329937C, Abschlussbericht

CELLAR community meeting 28 – 30 November 2022, Dresden/Rossendorf

Location, Characterisation, Methods, Equipment

Methods:

- low-level gamma spectrometry (2000 samples per year)
- Iow level tritium analyses (300 ... 400 samples per year)
- analytical services for:
 - \checkmark consumer protection (spring & tap water, medical ceramics, ...)
 - ✓ radiation protection & monitoring (abandoned uranium mining sites, deep geothermal energy ...)
 - ✓ science (luminescence dating in geology & archaeology, hydrogeology
 ...)
 - ✓ decommissioning of NPPs (determination of nuclide vectors ...)

Annual variation of Tritium concentration in precipitation at different sites in Saxony, germany

Location, Characterisation, Methods, Equipment

Equipment:

- gamma spectrometer:
- 6 x low background (20 ... 70 %)
 [n-type coaxial and p-type extended range]
- 0 I x ultra low background well type (30 %)
- 0 $\,$ I x ultra low background 92 %
- 0 by contract: I x ultra low background 95 $\%\,(\text{PTB})$
 - → minimum decision limit for I d measurements: $\approx 10^{-3}$ Bq
- liquid scintillation counter:
- o Quantulus 1220-002 (1994, Wallac Oy, Turku, Finland)
- o AccuFLEX LSC-LB7 (2019, Hitachi-Aloka)
- installation for electrolytic enrichment of tritium
 - ➤ decision limit 0.1 Bq l⁻¹ with enrichment

CELLAR community meeting 28 – 30 November 2022, Dresden/Rossendorf

Water analysis, Meteorites

German Drinking Water Ordinance:

- implementation of obligatory analysis of radioactive parameters (10.03.2016)
- > ≈ 15 000 wells, 4 samples in 4 different calendar quarters \Rightarrow ≈ 60 000 water samples (2016 2019)

Parameters:

➤ ²²² Rn	100 Bq l-1
"total indicative dose"	0.1 mSv a ⁻¹
> ³ H (if ordered by authorities)	100 Bq 1 ⁻¹
➤ Uranium (for chemical reasons!)	10 µg l-1

- Determination of the total indicative dose:
 - ➤ screening total alpha + ²²⁸Ra + ²¹⁰Pb
 - ➢ screening total alpha
 - ▶ single nuclides ^{238,234}U, ^{226,228}Ra, ²¹⁰Pb, ²¹⁰Po

Water analysis, Meteorites

German Drinking Water Ordinance:

- implementation of obligatory analysis of radioactive parameters (10.03.2016)
- > ≈ 15 000 wells, 4 samples in 4 different calendar quarters \Rightarrow ≈ 60 000 water samples (2016 2019)

Parameters:

➤ ²²² Rn	100 Bq 1-1
"total indicative dose"	0.1 mSv a ⁻¹
> ³ H (if ordered by authorities)	100 Bq 1 ⁻¹
➤ Uranium (for chemical reasons!)	10 μg l ⁻¹
	-

- Determination of the total indicative dose:
 - > screening total alpha + ²²⁸Ra + ²¹⁰Pb
 - ➢ screening total alpha
 - ➤ single nuclides ^{238,234}U, ^{226,228}Ra, ²¹⁰Pb, ²¹⁰Po

Water analysis, Meteorites

German Drinking Water Ordinance:

- implementation of obligatory analysis of radioactive parameters (10.03.2016)
- > ≈ 15 000 wells, 4 samples in 4 different calendar quarters $\Rightarrow \approx 60\ 000$ water samples (2016 2019)

2228.48/1
GRB BI.I HUX
1010160
26.10.10 FP47
5.181

BaSO₄ precipitate for ^{226,228}Ra + ²¹⁰Pb analysis

		Detection lim its	
	Reference	Required	Laboratory
²²⁶ Ra	0.5 Bq 1 ¹	$0.04 \text{ Bq } 1^1$	$0,003 \mathrm{Bq} \mathrm{I}^{1}$
²²⁸ Ra	0.2Bq I ¹	0.02Bq I^1	0,002 Bq 1^1
²¹⁰ Pb	0.2 Bq 1 ¹	0.02Bq I^1	$0.005 extbf{Bq} extbf{1}^1$

Total number of samples 2016-2021: 14 105
 ^{226,228}Ra + ²¹⁰Pb: 6 435

Water analysis, Meteorites

Meteorite "Flensburg":

- I2 September 2019: a daylight fireball was observed by hundreds of observers from UK to Denmark
- Friday, 13 September 2019: small meteorite of 24.5 g mass was found by accident in a garden in Flensburg, Germany
- Immediate gamma spectrometry in the Felsenkeller laboratory was arranged by Dieter Heinlein (German Fireball Network) and Silke Merchel (HZDR)
- I7 d measurement (I1 Oct 2019 28 Oct 2019) at 92 % ultra-low-level HPGe detector
- > Short living radionuclides ($T_{1/2} \le 100 \text{ d}$) verify recent fall
- Common "meteorite-nuclide" ²⁶Al below detection limit of gamma spectrometry AMS (HZDR): 0.209 ±0.030 dpm kg⁻¹

Bischoff, A. et al., 2021:The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies, Geochim. Cosmochim. Acta 293, 142-186

Water analysis, Meteorites

Meteorite "Flensburg":

- I2 September 2019: a daylight fireball was observed by hundreds of observers from UK to Denmark
- Friday, 13 September 2019: small meteorite of 24.5 g mass was found by accident in a garden in Flensburg, Germany
- Immediate gamma spectrometry in the Felsenkeller laboratory was arranged by Dieter Heinlein (German Fireball Network) and Silke Merchel (HZDR)
- I7 d measurement (I1 Oct 2019 28 Oct 2019) at 92 % ultra-low-level HPGe detector
- > Short living radionuclides ($T_{1/2} \le 100 \text{ d}$) verify recent fall
- Common "meteorite-nuclide" ²⁶Al below detection limit of gamma spectrometry AMS (HZDR): 0.209 ±0.030 dpm kg⁻¹

Radionuclide	Half-life	Massic activity (dpm kg ⁻¹)	σ (%)
⁷ Be	53.22 d	140	21
²² Na	2.6029 a	81	13
²⁶ AI	7.17 10⁵ a	< 1.7	
⁴⁶ Sc	83.787 d	15.5	19
⁴⁸ V	15.9735 d	32	25
⁵¹ Cr	22.704 d	130	31
⁵⁴ Mn	312.19 d	183	13
⁵⁶ Co	77.236 d	9.0	25
⁵⁷ Co	271.81 d	20	18
⁵⁸ Co	70.85 d	20	19
⁶⁰ Co	5.2711 a	123	12

Water analysis, Meteorites

Meteorite "Flensburg":

extraordinary composition and mineralogy:

 classified as very old and unique carbonaceous chondrite breccia (parent body was formed about 3 Ma after formation of first solid bodies in solar system [4565 Ma])

➢ indication of aqueous alteration (carbonates, phyllosilicates) ⇒ indicates earliest existence of fluid water

 \blacktriangleright short exposure time of ~ 5000 years

Radionuclide	Half-life	Massic activity (dpm kg ⁻¹)	σ (%)
⁷ Be	53.22 d	140	21
²² Na	2.6029 a	81	13
²⁶ AI	7.17 10⁵ a	< 1.7	
⁴⁶ Sc	83.787 d	15.5	19
⁴⁸ V	15.9735 d	32	25
⁵¹ Cr	22.704 d	130	31
⁵⁴ Mn	312.19 d	183	13
⁵⁶ Co	77.236 d	9.0	25
⁵⁷ Co	271.81 d	20	18
⁵⁸ Co	70.85 d	20	19
⁶⁰ Co	5.2711 a	123	12

Water analysis, Meteorites

Meteorite "Blaubeuren":

- I989 during digging a cable trench in 50-70 cm depth a large, magnetic and unusually heavy stone of about 30 kg mass was found in Blaubeuren (Southern Germany)
- placed in the garden as a decorative element
- > 2015 almost discarded, but moved to the cellar
- > 2020 idea could be a meteorite???
- Dieter Heinlein (German Fireball Network) checked a sample

- 2020 a second fragment of 410 g mass was found, probably broken off from the main piece
- laid on a well cover also as decorative element for 31 years

 \Rightarrow analysed in Felsenkeller by low-level gamma spectrometry

Von Thilo Parg - Eigenes Werk, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92999363

Water analysis, Meteorites

Meteorite "Blaubeuren":

- I989 during digging a cable trench in 50-70 cm depth a large, magnetic and unusually heavy stone of about 30 kg mass was found in Blaubeuren (Southern Germany)
- placed in the garden as a decorative element
- > 2015 almost discarded, but moved to the cellar
- > 2020 idea could be a meteorite???

VKI

Dieter Heinlein (German Fireball Network) checked a sample

 2020 a second fragment of 410 g mass was found, probably broken off from the main piece

28 – 30 November 2022, Dresden/Rossendorf

laid on a well cover also as decorative element for 31 years

 \Rightarrow analysed in Felsenkeller by low-level gamma spectrometry

CELLAR community meeting

Detlev Degering

29 November 2022 16

Water analysis, Meteorites

Meteorite "Blaubeuren":

▶ only cosmogenic radionuclide: 26 Al 44 ± 3 dpm kg⁻¹

Water analysis, Meteorites

Meteorite "Blaubeuren":

- → only cosmogenic radionuclide: ²⁶Al 44 ± 3 dpm kg⁻¹
- much more interesting: the other detected nuclides
- turning the piece upside down: count rate ratio of ⁷Be, ¹³⁷Cs and ²¹⁰Pb differs from the bulk nuclides
 - \Rightarrow surface contaminations
- ➤ aerosol-bound ⁷Be and ²¹⁰Pb deposited on top of the piece
- activities per (projected) area match perfectly to values found in topsoil layers nearby in the garden
- \Rightarrow piece was situated outside for a long time (²¹⁰Pb, 22 a) and also recently (⁷Be, 53 d)
- ¹³⁷Cs activity per area only I % of topsoil value, contamination on the bottom of the stone
- \Rightarrow fragment was not exposed to Chernobyl fallout in 1986

Water analysis, Meteorites

Meteorite "Blaubeuren":

- → only cosmogenic radionuclide: ²⁶Al 44 ± 3 dpm kg⁻¹
- much more interesting: the other detected nuclides
- turning the piece upside down: count rate ratio of ⁷Be, ¹³⁷Cs and ²¹⁰Pb differs from the bulk nuclides
 - \Rightarrow surface contaminations
- ➤ aerosol-bound ⁷Be and ²¹⁰Pb deposited on top of the piece
- activities per (projected) area match perfectly to values found in topsoil layers nearby in the garden
- \Rightarrow piece was situated outside for a long time (^210Pb, 22 a) and also recently (^7Be, 53 d)
- ¹³⁷Cs activity per area only I % of topsoil value, contamination on the bottom of the stone
- \Rightarrow fragment was not exposed to Chernobyl fallout in 1986

Water analysis, Meteorites

"Meteorites" are sometimes "METEOWRONGS"

- Lack of cosmogenic nuclides indicates an origin from earth instead of space
- Radionuclide analysis may serve as verification of meteoritic origin

Active Shielding

First steps towards an active shielding

Detector:

92 %, p-type extended range, selected materials, built 2007, Canberra Lingolsheim

Passive shielding:

5 cm "underground" OFRP copper (Aurubis) 5 cm Pb (2.7 \pm 0.6) Bq (²¹⁰Pb) kg⁻¹ (Plombum) 10 cm Pb (33 \pm 4) Bq (²¹⁰Pb) kg⁻¹ (van Gahlen) minimized air volume, flushed with N₂

Köhler, M. et al.: A new low-level γ-ray spectrometry system for environmental radioactivity at the underground laboratory Felsenkeller, Appl. Rad. Isot. 67 (2009) 736-740

Active Shielding

First steps towards an active shielding

> Detector:

92 %, p-type extended range, selected materials, built 2007, Canberra Lingolsheim

Passive shielding:

5 cm "underground" OFRP copper (Aurubis) 5 cm Pb (2.7 ± 0.6) Bq (210 Pb) kg^{-I} (Plombum) 10 cm Pb (33 ± 4) Bq (210 Pb) kg^{-I} (van Gahlen) minimized air volume, flushed with N₂

Additional active shielding:

large area plastic scintillators (EJ-200, Scionix) $550 \times 600 \times 50 \text{ mm}^3$ $550 \times 800 \times 50 \text{ mm}^3$ $600 \times 800 \times 45 \text{ mm}^3$ covering about 2π

Degering, D., Mauksch, B., Köhler, M.: Implementation of an active muon veto in an existing low-level g-ray spectrometer at the underground laboratory Felsenkeller poster on ICRM-LLRMT conference, LNGS Assergi, May 02 – 06 2022

Active Shielding

First steps towards an active shielding

- Electronics: analog NIM modules
- > Homogeneity tests of plastic scintillators with ⁹⁰Sr source:

- Definition of coincidence window:
 - -I μs ... +I9 μs (contains 99.6 % of all events)

Degering, D., Mauksch, B., Köhler, M.: Implementation of an active muon veto in an existing low-level g-ray spectrometer at the underground laboratory Felsenkeller poster on ICRM-LLRMT conference, LNGS Assergi, May 02 – 06 2022

Active Shielding

First steps towards an active shielding

Comparison of background spectra:

distinct suppression of continuous background (40 ... 2700 keV) passive only: $(2.057 \pm 0.004) \text{ min}^{-1} \text{ kg}^{-1}$ active + passive: $(0.2994 \pm 0.0015) \text{ min}^{-1} \text{ kg}^{-1}$

 \Rightarrow Total suppression ratio (0.1455 ± 0.0008)

> But:

energy dependent suppression ratio structure at 200 ... 300 keV ? lower suppression for 511 keV line ? ? gate not sufficiently long ? late oscillations prevent easy use of digital spectrometer?

Degering, D., Mauksch, B., Köhler, M.: Implementation of an active muon veto in an existing low-level g-ray spectrometer at the underground laboratory Felsenkeller poster on ICRM-LLRMT conference, LNGS Assergi, May 02 – 06 2022

Active Shielding

First steps towards an active shielding

Comparison of background spectra:

distinct suppression of continuous background (40 ... 2700 keV) passive only: $(2.057 \pm 0.004) \text{ min}^{-1} \text{ kg}^{-1}$ active + passive: $(0.2994 \pm 0.0015) \text{ min}^{-1} \text{ kg}^{-1}$

 \Rightarrow Total suppression ratio (0.1455 ± 0.0008)

> But:

energy dependent suppression ratio structure at 200 ... 300 keV ? lower suppression for 511 keV line ? ? gate not sufficiently long ? late oscillations prevent easy use of digital spectrometer?

OUTLOOK

Plan for the future:

- Construction of a low-level spectrometer best adapted to a medium deep underground lab
- > Based on a SAGe well low-level detector (Mirion, Lingolsheim)

Shallow underground:

direct and secondary muon events direct and muon induced neutron events Heusser, G. et al, 2015: GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth; Eur. Phys. J. C 75 531. double veto neutron moderators and absorbers

Deep underground:

negligible muon events

neutron events from ambient radioactivity

neutron absorbers

internal radioactivity

selected materials

Ackermann, N. et al., 2022: Monte Carlo simulation of background components in low level Germanium spectroscopy; talk on ICRM-LLRMT conference, LNGS Assergi, May 02 – 06 2022

VKTA

OUTLOOK

Plan for the future:

- Construction of a low-level spectrometer best adapted to a medium deep underground lab
- Based on a SAGe well low-level detector (Mirion, Lingolsheim)

Shallow underground:

direct and secondary muon events direct and muon induced neutron events Heusser, G. et al, 2015: GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth; Eur. Phys. J. C 75 531.

Medium deep underground:

significantly reduced muon events muon induced neutron events internal radioactivity

Deep underground:

negligible muon events neutron events from ambient radioactivity

internal radioactivity

Ackermann, N. et al., 2022: Monte Carlo simulation of background components in low level Germanium spectroscopy; talk on ICRM-LLRMT conference, LNGS Assergi, May 02 – 06 2022

neutron moderators and absorbers

single veto (4π) neutron moderator(s)? and absorber(s)? selected materials

neutron absorbers selected materials

double veto

THANK YOU FOR YOUR ATTENTION!

VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. V. Bautzner Landstraße 400, 01328 Dresden 3. 0351 – 260 3493
 ✓ kontakt@vkta.de
 ♥ www.vkta.de

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

STRAHLENSCHUT

- Personenuberwachung und amtlich bestimmte, akkreditierte Inkorporationsmessstelle
- Konzeption und Durchführung der Emissions-• und Immissionsüberwachung
- Strahlungsmesstechnik, betrieblicher • Strahlenschutz, Freigabe und Verwaltung radioaktiver Stoffe

ANALYTIK

- Akkreditiertes Labor für Umweltund Radionuklidanalytik mit Niederniveaumesslabor
- Analytik von kunstlichen/naturlichen Radionukliden • sowie Umweltkontaminanten
- Ingenieurleistungen für Probennahmen, Bestimmung von Nuklidvektoren und Abfallcharakterisierung

ENTSORGUNG

- Vorkonditionierung und Lagerung von radioaktiven Abfällen/Betrieb der Landessammelstelle
- Behandlung und Freimessung von festen und flüssigen • radioaktiven Reststoffen und Abfällen
- Beratung bei Bewertungsprojekten sowie Erstellung und • Durchführung von Freimessprogrammen

VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. V. Bautzner Landstraße 400. 01328 Dresden

% 0351 – 260 3493 ∣ kontakt@vkta.de 🛱 www.vkta.de

