

The GeMSE Gamma Spectroscopy Facility for Meteorite and Material Screening

CELLAR Community meeting 2022

Sebastian Lindemann, Universität Freiburg, 28.11.2022

Motivation

Material screening

- Rare event searches (e.g., Dark Matter, 0vββ) require low-background detector components
- Selection of suitable materials for the construction of XENONnT and DARWIN projects

Meteorite research

- Detection of cosmogenic isotopes (e.g., ²²Na, ⁴⁴Ti, ²⁷Al)
 - Determination of terrestrial age
 - Information on average fall rate of meteorites
- Non-destructive analysis of chemical composition (e.g., K/U ratio)
- Identification of paired samples
- Proof of extraterrestrial origin
 - primordial ²⁶Al in solar system extinct ($T_{1/2} = 7x10^5$ yrs) • ²⁶Al produced at low levels by cosmic reactions on unshielded
 - ²⁶Al produced at low levels by cosmic reactions on unshielded materials

Motivation

Material screening

- Rare event searches (e.g., Dark Matter, 0vββ) require low-background detector components
- Selection of suitable materials for the construction of XENONnT and DARWIN projects

Meteorite research

- Detection of cosmogenic isotopes (e.g., ²²Na, ⁴⁴Ti, ²⁷Al)
 - Determination of terrestrial age
 - Information on average fall rate of meteorites
- Non-destructive analysis of chemical composition (e.g., K/U ratio)
- Identification of paired samples
- Proof of extraterrestrial origin
 - primordial ²⁶Al in solar system extinct ($T_{1/2} = 7x10^5$ yrs) • ²⁶Al produced at low levels by cosmic reactions on unshielded
 - ²⁶Al produced at low levels by cosmic reactions on unshielded materials

Bernisches Historisches Museum. Fundort Mörigen, Kanton Bern, Schweiz, 19. Jh.

GeMSE: Location

Vue-des-Alpes Underground Laboratory (near Neuchâtel, Switzerland)

230 m rock overburden (620 m.w.e)
 → 2000x reduction of cosmic muons

- Car tunnel provides easy access
- One-hour drive from Bern, 2h from Freiburg

GeMSE: Design

HPGe-Detector

- Canberra Ultra-Low Background U-style Cryostat
- Standard coaxial, p-type HPGe detector (2.0 kg)

Shielding

- 24x24x35 cm³ sample cavity
 - 8 cm Cu-OFE (>99.99% purity) 0
 - 5 cm low-activity Pb (7 Bq/kg ²¹⁰Pb) 0
 - 15 cm normal Pb (91 Bg/kg²¹⁰Pb) 0
- **GN-purged glovebox**
- Plastic scintillator muon veto

Up to 6 weeks of autonomous operation

- 14-bit CAEN multichannel analyzer • (DT5781A MCA)
- Custom, open source slow control github.com/AG-Schumann/Doberman
- InfluxDB + Grafana visualization

GeMSE: Design

- Initial background goal of 250 counts/day (100-2700 keV)
- Location and shielding design optimized via GEANT4 simulations

M. v. Sivers et al, arXiv:1505.07015

GeMSE: Five-years of underground operation

GeMSE: Five-years of underground operation

(Analysis environment set up for non-physics users)

I. Measure sample (and background)

- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

XENONnT PMTs (Hamamatsu R11410)

PTFE holders (background)

10-PMTs batch + PTFE holders

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

(Analysis environment set up for non-physics users)

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

CALIBRATED COUNTING RATE AFTER MV DEAD-TIME CORRECTION

(Analysis environment set up for non-physics users)

GEANT4 branching ratio validation

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

- GEANT4 branching ratio validation
- Sample implementation

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

- GEANT4 branching ratio validation
- Sample implementation
- Complex 3D geometries can be imported
 - Relevant to determine self-absorption of meteorites

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

(Analysis environment set up for non-physics users)

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

0.016 0.014 0.012 * Efficiency 0.01 0.008 ***** 0.006 * 0.004 0.002 500 1000 1500 2000 2500 Energy [keV]

SIMULATED DETECTOR EFFICIENCY

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

- Analysis based on the *Bayesian Analysis Toolkit* (BAT) A. Cadwell et al., arXiv:0808.2552
- Uncertainty on detection efficiency as Gaussian prior
- Background-only (B) and signal+background (S) fit in 5σ region
 - $\circ \quad \mathsf{BF} = \mathsf{P}(\mathsf{B} \mid \mathsf{data}) / \mathsf{P}(\mathsf{S} \mid \mathsf{data})$
- BF < 0.33: Calculate activity
- BF > 0.33: Calculate upper limit

(Analysis environment set up for non-physics users)

- I. Measure sample (and background)
- II. Remove ²²²Rn contamination in data
- III. Derive energy calibration and resolution
- IV. Perform efficiency simulations for sample
- V. Fit gamma peaks of interest

(10 PMTs, 19 days) (10 PMTs, 21 days)

Isotope	Batch 1 [mBq/PMT]	Batch 2 [mBq/PMT]
²³⁸ U	< 5.0	< 6.3
²²⁸ Th	< 1.6 · 10 ⁻¹	$(1.1 \pm 0.4) \cdot 10^{-1}$
²²⁶ Ra	$(4.1 \pm 0.9) \cdot 10^{-1}$	$(2.4 \pm 0.9) \cdot 10^{-1}$
²²⁸ Ra	$(2.5 \pm 1.4) \cdot 10^{-1}$	< 0.4
⁶⁰ Co	$(3.8 \pm 0.8) \cdot 10^{-1}$	$(5.3 \pm 0.8) \cdot 10^{-1}$
¹³⁷ Cs	< 6.0 · 10 ⁻²	< 5.0 · 10 ⁻²
⁴⁰ K	5.5 ± 1.2	6.1 ± 1.7

Results fit expectations from bulk materials' contamination

E. Aprile et al. Eur. Phys. J. C (2015) 75: 546, arXiv:1503.07698

GeMSE: 2016-background comparisons

Energy (keV)	Chain/Isotope	Count Rate (day^{-1})						
			GeMSE		Gator [23]	GeMPI [24]		
122	⁵⁷ Co (ext.)		1.6 ± 0.2		-	-		
144	⁵⁷ Co (int.)		1.1 ± 0.2		-	-		
1125	⁶⁵ Zn		1.2 ± 0.2		-	-		
1173	⁶⁰ Co		0.84 ± 0.13	5	0.5 ± 0.1	0.26 ± 0.06		
1333	⁶⁰ Co		0.84 ± 0.13	5	0.5 ± 0.1	0.21 ± 0.05		
662	¹³⁷ Cs		< 0.03		0.3 ± 0.1	0.34 ± 0.16		
1461	40 K		0.23 ± 0.10)	0.5 ± 0.1	0.52 ± 0.07		
239	²³² Th/ ²¹² Pb		$0.34 \pm 0.1^{\circ}$	7	< 0.5	-		
583	²³² Th/ ²⁰⁸ Tl		0.17 ± 0.10)	-	≤ 0.13		
911	²³² Th/ ²²⁸ Ac		< 0.14		< 0.5	-		
2615	²³² Th/ ²⁰⁸ Tl		0.27 ± 0.08	3	0.2 ± 0.1	0.11 ± 0.03		
352	²³⁸ U/ ²¹⁴ Pb		$0.67 \pm 0.1^{\circ}$	7	0.7 ± 0.3	≤ 0.14		
609	²³⁸ U/ ²¹⁴ Bi	0.51 ± 0.14		1	0.6 ± 0.2	≤ 0.15		
1120	²³⁸ U/ ²¹⁴ Bi		< 0.02		0.3 ± 0.1	-		
1765	²³⁸ U/ ²¹⁴ Bi		0.14 ± 0.08	3	0.08 ± 0.06	-		
100-2700	integral		246 ± 2		226 ± 1	41 ± 1^{1}		

- GeMSE @ 620 m.w.e depth
- Gator/GeMPI @ 3600 m.w.e. depth

Thank you for your attention!

GeMSE: M. v. Sivers et al., arXiv:1606.03983 (2016) Gator: L. Baudis et al., JINST 6 (2011) P08010 GeMPI: G. Heusser et al., Radionuclides in the Environment, Elsevier (2006), pg. 495.

GeMSE: Background fit results (2016 vs 2020)

Source	Specific isotope activity $[\mu Bq/kg]$									
	⁶⁵ Zn	⁶⁸ Ge	⁶⁰ Co	⁵⁸ Co	$^{57}\mathrm{Co}$	⁵⁶ Co	^{54}Mn	$^{238}\mathrm{U}$	232 Th	^{40}K
Ge crystal (2016)	77^{+15}_{-13}	313^{+17}_{-23}	< 118	< 3.5	11^{+2}_{-1}	< 43	< 23	8 <u></u>	<u></u> 1	
Ge crystal (2020)	< 5.7	< 15.1	< 26.4	-	$3.6^{+1.3}_{-1.1}$	—	< 5.4		_	—
Cu shield (2016)	_	_	43^{+7}_{-5}	< 26	374_{-39}^{+48}	< 7.6	< 56	104^{+13}_{-15}	42^{+9}_{-10}	< 196
Cu shield (2020)	<u></u>	-	35^{+3}_{-3}	077	121^{+23}_{-24}	-	< 11.5	53^{+7}_{-7}	30^{+5}_{-6}	103^{+36}_{-29}
Pb shield (2016)	210 Pb activity < 8.2 Bq/kg									
Pb shield (2020)	$= 7.4^{+0.5}_{-0.5}\mathrm{Bq/kg}$									
Muons (2016)	$\mathrm{Flux} = 1.19^{+0.07}_{-0.09} \times 10^{-5} \mathrm{cm}^{-2} \mathrm{s}^{-1}$									
Muons (2020)	$1.44^{+0.04}_{-0.05} imes 10^{-5} { m cm}^{-2} { m s}^{-1}$									