

Boulby Underground Laboratory

Boulby Underground Laboratory and the Boulby Underground Screening Facility

ED BANKS Facility science technician (they/them)

Laboratory

Boulby Underground

Underground Facility

- 1.1km deep (2805MWE)
- Provides ~10⁶ reduction in cosmic muons
- 4000m³ lab space, in ISO 7/class 10,000 clean room

The Team

- Small local team
- Support from wider STFC
- Collaboration with over 40 worldwide institutions, >150 scientists and students.
- Working closely with ICL

Boulby Geology & Mining

Potash

Rock salt

Polyhalite

Science and Technology Facilities Council

- Israel Chemicals Ltd.
- Mining salts from the Zechstein sea
- Active mine since the 1970s

Dark Matter Searches

So Te Fa

Science and Technology Facilities Council

- Active: NEWS-G
- Historical: NAIAD, ZEPLIN, DRIFT
- Future: DarkSPHERE, potential Gen 3
- Helped develop the LZ programme through materials screening

Other Experiments

Science and Technology Facilities Council

Boulby Underground Laboratory

Renewable Energy Storage

and more...

BUGS Material Screening

- Class 1000 (ISO6) cleanroom
- Approx 200m²
- Current detectors:
- 7 Germanium detectors
- 2 XIA UltraLo-1800
- 2 Radon Emanation detectors
- Have screened for projects including LZ,
 DAMIC, SuperK and DarkSide

BUGS Nitrogen

- Recently commissioned upgraded N2 gas system to provide gas for
 - Ge Purge Gas
 - Ge LN₂ generator input
 - XIA dry gas for periods of downtime
 - RnEM carrier gas/purge gas
- Further improvements planned

Germanium detectors

- Ortec 1.8 kg (72%) p-type (LB)
- Canberra 2.0 kg (100%) & 3.2 kg (160%) p-types (S-ULB)
- 2x Canberra BEGe detectors (5030 LB, 6530 S-ULB)
- Canberra SAGe Well-type
 (S-ULB)
- Plans to install a twin system for coincidence

Science and Technology Facilities Council

Detector Backgrounds

Detector	Relative Efficiency or type	Count rate (/kg/day)					
		351 keV (²¹⁴ Pb)	609 keV (²¹⁴ Bi)	238 keV (²¹² Pb)	1461 keV (⁴⁰ K)	2615 keV (²⁰⁸ Tl)	
Roseberry	BE6530	0.15(7)	0.15(7)	0.8(3)	0.8(2)	0.2(1)	
Chaloner	BE5030	5(1)	4(1)	7(1)	8.4(14)	2.1(5)	
Belmont	160%	0.7(2)	0.4(1)	0.13(6)	1.0(2)	0.3(1)	
Merrybent	100%	2.5(3)	1.8(3)	0.3(1)	1.9(3)	0.8(2)	
Lunehead	100%	5.6(5)	4.7(4)	8.3(5)	9.1(6)	2.0(3)	
Lumpsey	SAGe-Well	104(2) 1.1(7)	60(2) 1.3(3)	166(3) 1.1(7)	7.0(6) 1.7(7)	12(1) 0.7(2)	

XIA UltraLo Alpha Particle Counter

- Two XIA UltraLo-1800 surface alpha counters running at Boulby Kettleness & Ormesby
- Dedicated argon gas is supplied to the counters via boil off from a 240 dewar. Typical flowrate is 31pm during measurement and 151pm during purging. The detector is kept under constant gas flow.
- Developing material cleaning techniques to complement surface assay capabilities.
- Surface measurements of LZ detector components and ultra-pure PNNL copper.
- Installed liner to reduce detector backgrounds.
 - Plan to use electroformed copper to further reduce background

UltraLo Results

Boulby Underground Laboratory

The lowest published measurement so far with XIA is XMASS at LRT2015 where they achieved 0.14 \pm 0.03 $\alpha/khr/cm^2$.

Factor three improvement compared to surface lab due to reduced cosmic ray events which can mimic background.

Sample	Duration (hrs)	Alphas	Surface Area (cm ²)	Emissivity (α/khr/cm²)	Activity (mBq/m²)
Background (SS Tray)	168	342	1800	1.24 ± 0.07	6.88 ± 0.38
Background (PTFE Liner)	168	103	1800	0.38 ± 0.04	2.12 ± 0.22
PNNL Copper	168	13	707	0.13 ± 0.04	0.72 ± 0.22

Electroforming

- •Electroforming underground suppresses background contribution from cosmogenic activation
- •Already demonstrated feasibility by NEWS-G collaboration
- $\bullet 500~\mu m$ layer plated to inner surface of 140 cm detector
- •Plating rate ~1 mm/month
- •Current ²³⁸U and ²³²Th contaminations below sensitivity of most sensitive assay technique, ICP-MS
- •Bounds are just upper limit value may be much lower
- $^{\circ 210}\text{Pb}$ assayed with XIA UltraLo-1800 $\alpha\text{-particle}$ counter. Again, below sensitivity of device

Science and Technology Facilities Council

Radon Emanation Detectors

- 2 30L detectors
- 2 3L emanation chambers
- Newly installed, stable and already sensitive to very low levels of Radon emanation
- We are still characterising the system, which will continue for some time, but first results are positive

Radon Emanation Detectors

Boulby Underground Laboratory

- 16 Po214 counts in 19.7 days of background.
- Less than one count per day

Planned improvements include:

- Improved sensitivity with RnCL and higher N2 flow
- Improved stability and performance with new CAEN DAQ
- Improved usability with expanding sample tracking system and a wider range of emanation chambers

Thanks for listening!

ed.banks@stfc.ac.uk boulby@stfc.ac.uk

Facebook: Boulby Underground Laboratory

- 7 Twitter: @boulbylab
- YouTube: Boulby Underground Laboratory