

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

Nuclear astrophysics in an underground lab

CELLAR Community Meeting Dresden-Rossendorf, 28.-30.11.2022

Daniel Bemmerer Helmholtz-Zentrum Dresden-Rossendorf

Institute of Radiation Physics · Nuclear Physics Division · Prof. Dr. Daniel Bemmerer · d.bemmerer@hzdr.de · www.hzdr.de

The periodic table of the elements... and their abundances

Nuclear astrophysics at the intersection of three disciplines

3 28.11.2022 Daniel Bemmerer: Nuclear astrophysics in an underground lab

The periodic table: Big Bang Nucleosynthesis

Big Bang

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Ра	U											

UNIVERSITÄT

DRESDEN

SCIENCE AND INNOVATION CAL HZL

CHETEC

INFRA

Astronomical ²H observations: Cooke *et al.* ApJ 855, 102 (2018)

LUNA deep underground, Gran Sasso / Italy: Mossa, DB *et al.* Nature 587, 210 (2020)

Using ²H from BBN to determine the cosmic baryon density:

$$\begin{split} \Omega_b h^2 &= 0.02271 \pm 0.00062 \quad \text{BBN, before new LUNA data} \\ \Omega_b h^2 &= 0.02233 \pm 0.00036 \quad \text{BBN, including new LUNA data} \\ \Omega_b h^2 &= 0.02236 \pm 0.00015 \quad \text{Cosmic Microwave Background} \end{split}$$

Charged-particle induced nuclear reactions in a star

Measuring very small cross sections, two examples

Felsenkeller Dresden

LUNA, below the Gran Sasso mountain, Italy

The periodic table: Hydrostatic stellar burning

Pm Sm Ce Pr Nd Stellar Pa Th U

Dy Eu Yb Gd Tb Ho Er Tm Lu

Study of the ³He(α,γ)⁷Be γ -ray angular distribution at Felsenkeller

CHETEC

INFRA

TECHNISCHE

UNIVERSITÄT

DRESDEN

DRESDEN concept

SCIENCE AND

INNOVATION CAMI

HZD

The periodic table: The slow neutron capture process (s-process)

The two astrophysical neutron capture processes, and the γ -process

UNIVERSITÄT

DRESDEN

SCIENCE AND INNOVATION CAN

INFRA

¹³C(α ,n)¹⁶O neutron source for the astrophysical s-process

- LUNA = deep underground Gran Sasso/Italy Ciani, DB *et al*. PRL 127, 152701 (2021)
- JUNA = deep underground Jinping/China Gao *et al*. PRL 129, 132701 (2022)

²²Ne(α ,n)²⁵Mg neutron source for the astrophysical s- and r-processes

LUNA = deep underground Gran Sasso Piatti, DB *et al.* EPJA 58, 194 (2022)

17

Rapid neutron capture in the r-process, strontium in kilonova AT2017gfo

Watson *et al.* Nature 574, 497 (2019)

18

GW170817

- Binary neutron star merger
- Total mass 2.7 M_●
- Distance 40 Mpc

AT2017gfo kilonova

- Spectra observed by X-shooter @ VLT, ESO
- Global analysis shows r-process pattern
- Spectral re-analysis reveals r-process strontium

Abbott et al. PRL 119, 161101 (2017)

Accelerator-based science underground, in Italy, USA, Germany, China

Laboratory for Underground Nuclear Astrophysics (LUNA) Italy

- LUNA 50 kV accelerator (1994-2001)
 Solar pp-chain, protostars
- LUNA 400 kV accelerator (2001-) Hydrogen burning in the sun and in asymptotic giant branch stars
- LUNA-MV 3.5 MV accelerator (2023-) Helium and carbon burning
- Gran Sasso Laboratory, Italy (1400 m rock, ~3400 m.w.e.)

The next generation

- CASPAR 1 MV accelerator (2017-) Hydrogen burning, astrophysical neutron sources Homestake underground lab, South Dakota, USA (~4000 m.w.e.)
- Felsenkeller 5 MV accelerator (2019-)
 Solar fusion, helium and carbon burning
- JUNO 400 kV accelerator (2020-) Hydrogen burning, astrophysical neutron sources Jinping underground lab, China (~6000 m.w.e.)

Dresden Felsenkeller underground lab, below 45 m rock (140 m.w.e.)

Joint effort HZDR - TU Dresden

- Investment by TU Dresden (Kai Zuber et al.) and HZDR (Daniel Bemmerer et al.)
- Day to day operations by HZDR

Two main instruments

- HZDR: 5 MV Pelletron, 30 μA beams of ¹H⁺, ⁴He⁺, ¹²C⁺, ...
- TU Dresden: 163% ultra-low-background HPGe detector for offline radioactivity measurements

Felsenkeller 5 MV underground ion accelerator

Irradiation station with 20+ HPGe crystals

28.11.2022 Daniel Bemmerer: Nuclear astrophysics in an underground lab

- 5 MV accelerator (0.4-3.8 MV), two alternative ion sources
- Internal RF ion source:
- SNICS sputter ion source:
- 30 µA ¹H, ⁴He
- 30 µA ¹²C

DRESDEM

concept

- 24 hour operation permitted even without operator
- Personnel is allowed at target while beam is on
- Control and counting rooms at surface
- EU-supported transnational access available

Felsenkeller, close to the "sweet spot" for nuclear astrophysics

CHETEC

INFRA

Probe DZA1_247m Run134 (113.7 Stunden)

concept

SCIENCE AND

UNIVERSITÄT

DRESDEN

ChETEC-INFRA EU project for nuclear astrophysics [ketek-infra]

https://www.chetec-infra.eu

- Starting Community of research infrastructures
- **32 partners** in 17 EU+ countries
- May 2021 April 2025
- 5 M€ support by EU

Acknowledgments

The Felsenkeller team

Funding

- Helmholtz NAVI, DTS, MML, ERC-RA ٠
- DFG, DAAD ٠
 - **TU Dresden Excellence Initiative funds** (K. Zuber), DFG Großgerät (K. Zuber)
- **European Union ChETEC-INFRA**

Tom Cowan

HZDR nuclear physics, HZDR ion beam ctr LUNA & ChETEC-INFRA collaborations ...and many more!

Kai Zuber

25 28.11.2022 Daniel Bemmerer: Nuclear astrophysics in an underground lab

Nuclear astrophysics in an underground lab

Nucleosynthesis processes, and how to study them in the laboratory

- Big Bang Nucleosynthesis and ²H
- Stellar burning of ¹²C
- Neutron source reactions
- Link to multi-messenger observations

Felsenkeller underground laboratory

Capabilities and work in progress

Cosmic
Stellar
r-process
s-process

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	U	Fι	Irthe	r cor	ntribu	ition	s: p-,	i-, n)-, V	-proc	esse	es

32 partners in ChETEC-INFRA

INFRA

SCIENCE AND INNOVATION CAMPUS

DRESDEN

Solar neutrino fluxes and the solar abundance problem

Neutrino flux data are more precise than the solar models!

Neutrino fluxes from B16 Standard Solar Model, Vinyoles *et al.* ApJ 2017

GS98 = Old, high CNO elemental abundances also: Magg+ 2022

AGSS09 = New, low CNO elemental abundances also: Asplund+ 2021

Nuclear physics drives the uncertainties in the predicted solar neutrino fluxes

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Φ(pep) κ :0.5 L_{\odot} :0.4 S_{34} :Φ(hep) S_{hep} :30.2 S_{33} :2.4 κ :Φ(⁷ Be) S_{34} :4.1 κ :3.8 S_{33} :Φ(⁸ B) κ :7.3 S_{17} :4.8Diff:Φ(¹³ N)C:10.0 S_{114} :5.4Diff:Φ(¹⁵ O)C:9.4 S_{114} :7.9Diff:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1Diff: 0.5 2.3Diff: 1.9 4.0 S_{34} : 3.9 4.8 κ : 3.9
$ \Phi(^{7}\text{Be}) = \begin{pmatrix} S_{34}: & 4.1 \\ \kappa: & 7.3 \end{pmatrix} \kappa: 3.8 S_{33}: \\ \kappa: & 7.3 \end{pmatrix} K: 3.8 S_{33}: \\ \Phi(^{8}\text{B}) \kappa: & 7.3 \end{pmatrix} K: 3.8 S_{33}: \\ \Phi(^{13}\text{N}) C: 10.0 S_{114}: 5.4 \text{Diff:} \\ \Phi(^{15}\text{O}) C: 9.4 S_{114}: 7.9 \text{Diff:} \\ S_{114}: 7.9 \text{Diff:} \\ S_{114}: 7.9 \text{Diff:} \\ S_{114}: 7.9 \text{Diff:} \\ S_{114}: 7.9 \text{Diff:} \\ S_{114}: S_{114}: S_{114}: \\ S_{114}: S_{114}: S_{114}: \\ S_{114$	2.3 Diff: 1.9 4.0 S_{34} : 3.9 4.8 κ : 3.9
$\Phi(^{8}B)$ κ :7.3 S_{17} :4.8Diff: $\Phi(^{13}N)$ C:10.0 S_{114} :5.4Diff: $\Phi(^{15}O)$ C:9.4 S_{114} :7.9Diff:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8 κ : 3.9
$\Phi(^{15}\text{O})$ C: 9.4 S ₁₁₄ : 7.9 Diff:	
	5.6 κ : 5.5
$\Phi(^{17}\text{F})$ Q: 12.6 S_{116} 8.8 κ :	6.0 Diff: 6.0
	Vinyoles <i>et al.</i> , Astrophys. J. (2017)
S ₃₄ : S ₁₁₄ : ¹⁴ N(p,γ) ¹⁵ O	S_{17} :
^s He(α,γ) ^r Be	′ве(р,γ)°в

DRESDEN

Dominant Theoretical Error Sources for Neutrino Fluxes and the Main Characteristics of the SSM