The science of neutrinoless double beta decay – presence and future

Neutrinoless process is violating lepton number by 2 units

Beyond Standard Model

Produced by J. Suhonen

Double beta decay

- (A,Z) \rightarrow (A,Z+2) +2 e⁻ + $2\bar{\nu}_{e}$
- (A,Z) → (A,Z+2) + 2 e⁻

2νββ 0νββ

Unique process to measure the character of the neutrino

The smaller the neutrino mass the longer the half-life

Neutrino mass measurement via half-life measurement

Within a few years...

PHYSICAL REVIEW

Double Beta-Disintegration

M. GOEPPERT-MAYER, The Johns Hopkins University (Received May 20, 1935)

DECEMBER 15, 1939

PHYSICAL REVIEW

On Transition Probabilities in Double Beta-Disintegration

W. H. FURRY Physics Research Laboratory, Harvard University, Cambridge, Massachusetts (Received October 16, 1939)

+ Racah (1936) and Majorana (1937)

Requirements - I

1.) m(A,Z) > m(A,Z+2)

2.) Single beta decay must be forbidden (m (A,Z) < m (A,Z+1)) or at least strongly suppressed (large change in angular momentum)

Double beta nculides

A=76 Example: Ge-76

There are only 35 isotopes in nature for double electron emission

$\beta^{-}\beta^{-}$ candidates	T ₀ (keV)	Abundance (%)	$(G^{2v})^{-1}$ (y)	(G ^{0v}) ⁻¹ (y)
⁴⁶ Ca→ ⁴⁶ Ti	987 + 4	0.0035	871521	7 16 5 26
$48_{Ca} \rightarrow 48_{Ti}^{a}$	4271 ± 4	0.187	0.71221 2.52F16	A 10E20
$70_{7n} \rightarrow 70_{Ce}$	$\frac{4271}{1001} + 3$	0.62	2.52E10 3.17F21	4.10224
76 Ge 76 Ge	2039.6 ± 0.9	7.8	7.66F18	4.09F25
80 Se 80 Kr	130 + 9	40.8	8 20 F 27	2 34F28
⁸² Se ⁸² Kr	2995 ± 6	9.0	2.30E17	9.27F24
⁸⁶ Kr→ ⁸⁶ Sr	1256 + 5	173	3.00E20	1.57E26
⁹⁴ 7r→ ⁹⁴ Mo	1145 3+2 5	17.4	4 34 E 20	1.57E26
$967r \rightarrow 96Mo^a$	3350 + 3	2.8	5.19F16	4.46F24
⁹⁸ Mo→ ⁹⁸ Ru	112 + 7	24.1	1.03E28	149528
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3034 + 6	96	1.05E20	5.70E24
104 Ru \rightarrow 104 Pd	1299 + 2	18.7	1.09E20	8 32 E 25
¹¹⁰ Pd→ ¹¹⁰ Cd	2013 ± 19	11.8	2.51 <i>E</i> 18	1.86E25
¹¹⁴ Cd→ ¹¹⁴ Sn	534 ± 4	28.7	6.93 <i>E</i> 22	6.10E26
¹¹⁶ Cd→ ¹¹⁶ Sn	2802 ± 4	7.5	1.25E17	5.28E24
$^{122}Sn \rightarrow ^{122}Te$	364 ± 4	4.56	9.55E23	1.16E27
$^{124}Sn \rightarrow ^{124}Te$	2288.1 ± 1.6	5.64	5.93E17	9.48E24
¹²⁸ Te→ ¹²⁸ Xe	868 ± 4	31.7	1.18E21	1.43E26
¹³⁰ Te→ ¹³⁰ Xe	2533 ± 4	34.5	2.08 <i>E</i> 17	5.89 <i>E</i> 24
¹³⁴ Xe→ ¹³⁴ Ba	847 ±10	10.4	1.16 <i>E</i> 21	1.30 <i>E</i> 26
¹³⁶ Xe→ ¹³⁶ Ba	2479 ±8	8.9	2.07 <i>E</i> 17	5.52 <i>E</i> 24
¹⁴² Ce→ ¹⁴² Nd	1417.6 ± 2.5	11.1	1.38 <i>E</i> 19	2.31 <i>E</i> 25
¹⁴⁶ Nd→ ¹⁴⁶ Sm ^b	56 ± 5	17.2	2.06 <i>E</i> 29	7.05 <i>E</i> 27
¹⁴⁸ Nd→ ¹⁴⁸ Sm ^b	1928.3 ± 1.9	5.7	9.35 <i>E</i> 17	7.84 <i>E</i> 24
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3367.1 ± 2.2	5.6	8.41 <i>E</i> 15	1.25 <i>E</i> 24
¹⁵⁴ Sm→ ¹⁵⁴ Gd	1251.9 ± 1.5	22.6	2.44 <i>E</i> 19	2.38 <i>E</i> 25
¹⁶⁰ Gd→ ¹⁶⁰ Dy	1729.5 ± 1.4	21.8	1.51 <i>E</i> 18	7.99 <i>E</i> 24
¹⁷⁰ Er→ ¹⁷⁰ Yb	653.9 ± 1.6	14.9	1.82 <i>E</i> 21	6.92 <i>E</i> 25

Potential isotopes-1

Book: F. Böhm, P. Vogel Physics of massive neutrinos

Potential isotopes -2

$\beta^{-}\beta^{-}$ candidates	$\beta^{-}\beta^{-}$ T_0 Abs		(G ^{2v}) ⁻¹	(G ^{0v}) ⁻¹
	andidates (keV)		(y)	(y)
$^{176}Yb \rightarrow ^{176}Hf$	1078.8 ± 2.7	12.6	3.26 <i>E</i> 19	1.75 <i>E</i> 25
$^{186}W \rightarrow ^{186}Os^{b}$	490.3 ± 2.2	28.6	7.68 <i>E</i> 21	6.95 <i>E</i> 25
$^{192}Os \rightarrow ^{192}Pt$	417 ± 4	41.0	1.98 <i>E</i> 22	7.70 <i>E</i> 25
$^{198}Pt \rightarrow ^{198}Hg$	1048 ± 4	7.2	1.63 <i>E</i> 19	8.74 <i>E</i> 24
$^{204}Hg \rightarrow ^{204}Pb$	416.5 ± 1.1	6.9	1.23 <i>E</i> 22	5.06 <i>E</i> 25
$^{232}Th \rightarrow ^{232}U^{b}$	858.2 ± 6	100	1.68 <i>E</i> 19	3.97 <i>E</i> 24
$^{238}U \rightarrow ^{238}Pu^{b}$	1145.8 ± 1.7	99.27	1.47 <i>E</i> 18	1.68 <i>E</i> 24
$\beta^+\beta^+$ candidates	T ₀	Abundance $(G^{2\nu})^{-1}$		(G ^{0v}) ⁻¹
	(keV)	(%) (y)		(y)
78 Kr \rightarrow 78 Se	838	0.35	2.56E24	1.8E29
96 Ru \rightarrow 96 Mo	676	5.5	3.34E25	8.8E29
106 Cd \rightarrow 106 Pd	738	1.25	1.69E25	7.4E29
124 Xe \rightarrow 124 Te	822	0.10	7.57E24	5.9E29
130 Ba \rightarrow 130 Xe	534	0.11	6.92E26	6.4E30
136 Ce \rightarrow 136 Ba	362	0.19	5.15E28	6.1E31

TECHNISCHE

UNIVERSITÄT DRESDEN

Signal information

Signal: One new isotope (ionised), two electrons (fixed total energy)

- Single electron energies
- Angle between electrons
- Sum energy of both electrons
- Daughter ion (A,Z+2)
- Gamma rays (eg. four 511 keV photons in or excited state transitions)

$0\nu\beta\beta$ -Total lepton number violation

Any $\Delta L=2$ process can contribute to $0\nu\beta\beta$

Light Majorana neutrinos

$0\nu\beta\beta$ -Total lepton number violation

Two more phases (Majorana phases) only appear in double beta decay

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ -\sin\theta_{12} & \cos\theta_{12} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta}\\ 0 & 1 & 0\\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{23} & \sin\theta_{23}\\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & e^{i\alpha_{1}} & 0\\ 0 & 0 & e^{i\alpha_{2}} \end{pmatrix}$$

$$\langle m_{v} \rangle = \sum_{i} U_{ei}^{2} m_{v_{i}} = c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i2\alpha_{1}} m_{2} + s_{13}^{2} e^{i2(\alpha_{2} - \delta)} m_{3}$$

Compare to beta decay

$$m^2(\nu_e) = \sum_i |U_{ei}|^2 m^2(\nu_i)$$

Spectral shapes $0_{\nu\beta\beta}$: Peak at Q-value of nuclear transition

If background limited

Kai Zuber, Cellar Meeting 28.11.2022

2040

energy, keV

2060

2080

2100

2020

2000

Back of an envelope

This is the 50 meV option, just add 0's to moles and kgs if you want smaller neutrino masses

 $T_{1/2} = In2 \cdot a \cdot N_A \cdot M \cdot t / N_{\beta\beta} \quad (\tau >> T) \quad (Background free)$

For half-life measurements of 10²⁶⁻²⁷ yrs

1 event/yr you need 10²⁶⁻²⁷ source atoms

This is about 1000 moles of isotope, implying about 100 kg

Now you only can loose: nat. abundance, efficiency, background, ...

Experimental approaches

 $0\nu\beta\beta$ decay rate scales with Q⁵ \rightarrow only those with Q>2000 keV

Isotope	Nat. abund. (%)	Q-values 2016	
Ca-48	0.187	4262.96 ± 0.84	Candles
Ge-76	7.44	2039.006 ± 0.050	GERDA, Majorana
Se-82	8.73	2997.9 ± 0.3	SuperNEMO, LUCIFER
Zr-96	2.80	3356.097 ± 0.086	
Mo-100	9.63	3034.40 ± 0.17	MOON, AMore
Pd-110	11.72	2017.85 ± 0.64	
Cd-116	7.49	2813.50 ± 0.13	COBRA
Sn-124	5.79	2292.64 ± 0.39	Tin.Tin
Te-130	33.80	2527.518 ± 0.013	CUORE, SNO+
Xe-136	8.9	2457.83 ± 0.37	EXO, KamLAND-Zen, NEXT,
Nd-150	5.64	3371.38 ± 0.20	МСТ

11 isotopes of interest

XMASS

There is no super-isotope!

Going underground

Various detectors

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

SNO+

SNO (heavy water) and (SNO+) (liquid

Scintillator) located at Sudbury, Canada

Flat rock overburden of 2070 m, equivalent 6010 m.w.e Acrylic spherical vessel (AV) with shell thickness of 5.5 cm and about 9500 PMTs.

Left: artistic impression of the cavity containing the detector

Aim:

Double beta decay loaded withTellurium. Loading up to 1.3 tons of Te. Q-value about 3 MeV NB: Quite some physics will be lost because of below Q-value of Te-130 is at 2.2 MeV i.e. no light below 2.2 MeV

Nevertheless: Largest amount of all double beta experiments Other experiments copy this technology now

Array of solid state detectors

What is long living ? (personal guess)

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Array of 1 tonne of enriched Ge-76 HPGe detectors

Benefit: Fantastic energy resolution

Requires (nitrogen) cooling

Array of solid state detectors

COBRA experiment

Array of a large amount of CdZnTe detectors

Benefit: Room temperature, various double beta isotopes in one

Comparison of some isotopes

Double beta peaks in the region of the 2614 keV line Background significant lower, i.e. best is peak beyond 2.6 MeV

Summary

- Neutrino-less double beta decay is a very hot topic in science
- There is no super-isotope, so different groups focus on this topic
- The observation would prove that lepton number would be violated by 2 units and thus Physics beyond the Standard Modelof Particle Physics

