Contribution ID: 13

HMC Impulse "Use cases in HMC - from generation to reuse of data"

Thursday 6 October 2022 09:10 (15 minutes)

We present three use cases which showcase methods of providing a detailed metadata description with the goal of increasing the reusability of data.

irst, Hub Energy presents a photovoltaic system which required ontology development and the implementation of data models based on standards like IEC 61850 [1] or SensorML [2] as well as on FAIR Digital Objects (FDO) [3]. The backend was realized using the Metastore [4] software from the Fair Data Commons while a FDO browser was implemented for visualization which offers a cascading search for metadata and application data.

In a second use case of Hub Energy, time series data of the energy consumption of the buildings on KIT's Campus North are described by automatically generated RO-Crates [5]. This allows energy researchers to use these time series data without any knowledge about the structure of the database and provides a case study on working with RO-Crate technology.

The third use case is provided by Hub Matter, in the research field of high energy physics, and shows the optimization of a typical data set for data publication. To increase FAIRness of the distributed file set, (meta)data is (i) enriched by metadata, (ii) converted to a machine- as well as human-readable format and (iii) linked to a central file to create scientific context. By abstracting from community-specific details these measures can serve as a general approach to make data publishable.

The variety of use cases presented provides a menu of technologies and approaches implemented in diverse contexts to enhance the reusability of data, along with general advice for anyone looking to do the same.

Please assign your poster to one of the following keywords.

In addition please add keywords.

Please assign yourself (presenting author) to one of the stakeholders.

Please specify "other" (stakeholder)

Presenters: GUENTHER, Gerrit (Helmholtz-Zentrum Berlin); SCHWEIKERT, Jan (KIT) **Session Classification:** Session