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Founded 1995 by Prof. Karlheinz Meier (†2018)

1995 HDR vision sensors 

1996 analog image processing 

2000 Perceptron based analog neural networks: EVOOPT and 
HAGEN 

2003 first concepts for spike based analog neural networks

2004 first accelerated analog neural network chip with short 
and long term plasticity: Spikey

2010 first 20cm wafer-scale neuromorphic system: 
BrainScaleS

Electronic Vision(s)
Kirchhoff Institute for Physics, Heidelberg University

HAGEN: Perceptron-based 

neuromorphic chip introducing:

• accelerated operation

• mixed-signal Kernels

Spikey: spike-based 

neuromorphic chip introducing:

• Spike-Time-Dependent-
Plasticity

• analog parameter storage for 
calibratable physical model
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BrainScaleS: 
wafer-scale 
neuromorphic system 
introducing:

• high synaptic fan-
in up-to 14k

• wafer-scale spike 
communication



• one year training

• energy consumption: 500 kW

→182500 kWh (36500 €)

Computers are becoming
more brain-like : 
brain-inspired computing
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Brain Inspired Computing : 
overcoming the Von Neumann bottleneck using artificial neural networks
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• stochastic gradient descent minimizes the loss → difference between ground truth („cat“) and 

network output („maybe a cat“)

with regards to training data set → set of different animal images

• automatic gradient calculation possible using backprop algorithm

• gradient estimation techniques exist for event(spike)-based networks

Supervised training possible using stochastic gradient descent
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Machine Learning 

• vector-matrix 

multiplication

• simple non-linear 

activation function f 

(i.e. ReLU): 

• Stochastic gradient 

descent using 

backpropagation

Perceptron model (biology of 1950) Spike-based model (current biology)
Neuromorphic

Computing
• time-

continuous 

dynamical 

system

• always 

recurrent

• vector-matrix 

multiplication

• complex non-

linearities

• binary neuron 

output

• allows to model 

biological 

learning 

mechanisms

• can be trained 

with backprop-

through-time 15

HAGEN (2001)

Spikey (2004)



https://en.wikipedia.org/wiki/Neuron
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• high fan-in and fan-out : 

10k to > 100k 

• axon length can be > 1m

• complex internal state

→ reduced to membrane
voltage of soma for 
simple neuron models



Principles of spike-based neural communication

action potential (“spike”)

neurons

synapses

output spike

neuron threshold voltage

membrane voltage

• neurons integrate over space and time

• temporal correlation is important

• mixed-signal system:   action potential ↔membrane voltage

• fault tolerant

• low power consumption → 100 Billion neurons: 20 Watts 

(digital)                        (analog)
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Dimensions of neuromorphic computing

event based → rate based

continuous time, c. valued → discrete time, d. valued

approximate, noisy, stochastic comp.→ exact computations

structured neurons → point neurons

non-linear dentrides → linear dentrides

plastic → static

conceptual

dimensions :

analog → digital

electrical → optical

standard CMOS → novel devices

fully programmable → fixed structure

in-memory computing → von Neumann computing

constant speed → variable speed

(real time or accelerated) (best effort)

technological

dimensions :

application

dimensions :

research → commercial

energy, size, cost constrained → energy, size, cost agnostic

brain emulation → machine learning, AI

needs to adapt → fixed function

analog NMC in Heidelberg



Fundamental architecture for analog neuromorphic computing :
• Consider a simple 

physical model for the 
neuron’s cell 
membrane potential V:

( )VEg
dt

dV
C −= leakleakm Cm

R = 1/gleak

Eleak

V(t)

→ accelerated neuron model
dt

dV

dt

dV

VLSIbio



continuous time
• fixed acceleration factor (we use 103 to 105)

no multiplexing of components storing model
variables
• each neuron has its membrane capacitor
• each synapse has a physical realization 20

• representing model 
parameters as physical 
quantities :
voltage, current, charge
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Realization of a physical neural network : BrainScaleS
spiking neurons built from parameterized dendritic compartments

photograph of the BrainScaleS 1 
neuromorphic chip

• modular structure
• Adaptive Exponential I&F model 
• full set of ion-channel circuits 

for each compartment
• 24 calibration parameters per 

compartment
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complex neurons can be build
by connecting individual 
compartments

synapse

array
(up to 256x256)

256 dendritic
compartment circuits
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BrainScaleS architecture: 
analog neuromorphic core as coprocessor
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• on-chip training with complex learning

rules

• learning capabilities scale with system

size

• can cope with scaled-up speed of 

accelerated physical model

current two-tile ASIC:

• tile-based

• each tile combines

analog and digital parts 4x8 mm2

65nm CMOS



BrainScaleS-2: Hybrid Plasticity
• analog correlation measurement in synapses

• A/D conversion by parallel ADC

• digital Plasticity Processing Units can access
– synaptic weights (𝜔)

– pre-synaptic connection → structural plasticity

– neuron voltages and firing rates

analog

physical model

digital

numerical model

plasticity takes place at the synapse processor

vector unit

analog core

high-bw
link

cacheNOC
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BrainScaleS is a substrate for different neuromorphic algorithms
• accelerated emulation of networks of structured neurons with non-linear dendrites

(Emulating dendritic computing paradigms on analog neuromorphic hardware, Jakob Kaiser et.al., Neuroscience, 2021)

• large parameter sweeps for network operation tuning 
(Autocorrelations in homeostatic spiking neural networks as a result of emergent bistable activity, J Zierenberg et. al., Bulletin of the American Physical Society, 2022/3/14,

Control of criticality and computation in spiking neuromorphic networks with plasticity, B Cramer et.al., Nature communications, 2020/6/5)

• biology inspired learning experiments with programmed local plasticity 
(Structural plasticity on an accelerated analog neuromorphic hardware system, S Billaudelle et. al., Neural Networks, 2021/1/1)

• learning-to-learn sweeps of meta-parameters (Neuromorphic Hardware Learns to Learn, T Bohnstingl et.al., Front Neurosci.,2019)

• inference experiments for solving tasks using optimized network parameters generated by hardware-in-the-loop gradient-based training 
(Surrogate gradients for analog neuromorphic computing, B Cramer et.al., pnas.2109194119, 2022;

Fast and energy-efficient neuromorphic deep learning with first-spike times, J Göltz et.al, Nature machine intelligence, 2021/9 )

• applications of spiking neural networks for approximate computing
(Spiking neuromorphic chip learns entangled quantum states, S Czischek, et. al. , SciPost Physics 12 (1), 039, 2022)

• parameter fitting to match experimental observations

• direct real-time coupling between in-vitro preparations in wet-labs and the BrainScaleS system
→ initially with HeiCINN in Heidelberg, but open for others

• repeated execution of a network and/or long operation to gather statistical information or for sampling from stochastic models

• interactive execution of small models with immediate visualization for educational purposes
→ girls’ day, advanced lab course 

• experimental platform for analogue computing research
(Towards Addressing Noise and Static Variations of Analog Computations Using Efficient Retraining, B Klein et.al., ECML PKDD, 2021/9/13)

→ first industry collaboration shows promising results in the area of optical communication 
(“Best Student Paper Award” for Elias Arnold at SPPcom 2022, nominated for “Best Student Paper Award” at ECOC 2022)



Emergent bistability in homeostatic regulated spiking networks
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B.Cramer, …, V. Priesemann et.al. “Control of criticality and computation in spiking neuromorphic networks with plasticity”, 
Nat Commun 11, 2853 (2020). https://doi.org/10.1038/s41467-020-16548-3
B. Cramer, …, V. Priesemann and J. Zierenberg et al. "Autocorrelations from emergent bistability in homeostatic spiking 
neural networks on neuromorphic hardware" ArXiv 2208.08329v1

• recursive network of 512 LIF 

neurons, 20% inhibitory

→ hardware plasticity used to find 
homeostatic balance: Δωij=λ(ν*- νj)

• reducing the strength of external 

inputs shifts network to bistable

behaviour

→ alternating between high and 

low firing rates while mean stays

stable

→ emerging bistability increases

autocorrelation time

→ network compensates for a lack 

of input to preserve firing rate



Structural plasticity on BrainScaleS-2

● On-chip structural plasticity

● Self-configuring receptive fields

● Efficient use of synaptic resources

S. Billaudelle, B. Cramer, et al. "Structural plasticity on an accelerated 
analog neuromorphic hardware system." Neural Networks 133 (2021): 
11-20.



Multi-compartment neurons on BrainScaleS-2 

● User-defined morphologies
● Parameter adjustable for each compartment
● Dendritic spikes
● No additional energy consumption
● 1000x acceleration factor independent of 

neuron morphology

coincidence

detection

Emulating Dendritic Computing Paradigms on Analog Neuromorphic Hardware, J Kaiser et.al., Neuroscience, 2021



fitting BrainScaleS neurons to experimental data
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“Training deep neural density estimators to identify mechanistic models of neural dynamics”, Pedro J Gonçalves et. al., 
eLife 2020;9:e56261 DOI: 10.7554/ELIFE.56261

hardware model

measured data

https://elifesciences.org/articles/56261#x7cd3ff70
https://doi.org/10.7554/eLife.56261
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early results from BSS-2 hardware

ongoing PhD thesis from Jakob Kaiser, 

in collaboration with Sebastian Schmitt,

Tetzlaff lab, University Göttingen

• chain of five dendritic

compartments

• finding the correct

parameter for leakage and 

inter-compartmental

conductance

reference

measurement



fitting for absolute PSP heights
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reference

measurement

• fitting for different criteria possible

• with exact PSP heights as target, 

the likely values for gleak and gaxial

are clustered

ongoing PhD thesis from Jakob Kaiser, 

in collaboration with Sebastian Schmitt,

Tetzlaff lab, University Göttingen



Summary & Outlook
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• BrainScaleS-2 is a physical substrate with continuous time neuron dynamics

• supported neuromorphic algorithms :

• deep networks (spiking and non-spiking, recurrent and feed-forward)

• brain emulation with complex neuron models to fit experimental data 

• local learning with hardware support for a multitude of plasticity rules

• hardware support for structural plasticity improves hardware utilization

• publicly available via the European EBRAINS service

(not yet funded after the end of the Human Brain Project)

• easy-to-use PyNN based API

• high-level support available

• BrainScaleS architecture can be scaled to large-size multi-chip networks

• already demonstrated with the BrainScaleS-1 wafer-scale prototype

• will be part of the next major version of the BrainScaleS-2 ASIC


