

Human Brain Project

Cytoarchitectonic mapping of the human olfactory tubercle and terminal islands

Joko Poleksić

Basal forebrain

Dissociated Representations of Irritation and Valence in Human Primary Olfactory Cortex

C. Zelano,¹ J. Montag,² B. Johnson,³ R. Khan,⁴ and N. Sobel^{1,2,3,4,5}

¹Program in Biophysics, ²Department of Psychology, ³Department of Bioengineering, and ⁴Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; and ⁵Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel

Submitted 22 October 2006; accepted in final form 4 January 2007

Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI

Shiloh L. Echevarria-Cooper,^{1,2} Guangyu Zhou,¹ Christina Zelano,¹ [©]Franco Pestilli,^{4,5} Todd B. Parrish,⁶ and [©]Thorsten Kahnt^{1,3}

¹Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, ²The Graduate School, Northwestern University Interdepartmental Neuroscience (NUIN), Evanston, Illinois 60208, ³Department of Psychology, Northwestern University, Weinberg College of Arts and Sciences, Evanston, Illinois 60208, ⁴Department of Psychology, The University of Texas at Austin, Texas 78712, ⁵Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712, and ⁶Department of Radiology, Northwestern University, Chicago, Illinois 6011

Characterizing functional pathways of the human olfactory system

Guangyu Zhou¹*, Gregory Lane¹, Shiloh L Cooper¹, Thorsten Kahnt^{1,2}, Christina Zelano¹*

¹Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States; ²Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, United States

- Olfactory dysfunction (hyposmia) is an early clinical sign of AD and PD
- Post-mortem studies confirmed the presence of pathological changes in the olfactory tubercle

Terminal islands

- Clusters of small cells scattered in the basal forebrain
- Granular (γ_1) and parvicellular ($\gamma_{2,} \gamma_3$) islands
- Imatture cells with potential for postnatal development?
- Pathophysiology of schizophrenia?

Great Terminal Island (GTI)

BigBrain: An Ultrahigh-Resolution 3D Human Brain Model

Katrin Amunts,^{1,2,3,4}* Claude Lepage,⁵ Louis Borgeat,⁶ Hartmut Mohlberg,^{1,2} Timo Dickscheid,^{1,2} Marc-Étienne Rousseau,⁵ Sebastian Bludau,^{1,2} Pierre-Louis Bazin,⁷ Lindsay B. Lewis,⁵ Ana-Maria Oros-Peusquens,^{1,2} Nadim J. Shah,^{1,2} Thomas Lippert,⁸ Karl Zilles,^{1,2,3,4} Alan C. Evans⁵

7404 coronal sections stained for cell bodies, digitized (20μm isotropic) and 3D reconstructed

cytoarchitecture

functional neuroimaging

Integration of multimodal data

receptor/neurotransmiter distribution

_ •		-		
Pub	licly	avai	lab	le

Aim

- To determine the localization of olfactory tubercle and terminal islands in stereotaxic space and intersubject variability based on cytoarchitectonic probability maps
- 3D reconstruction of the Great Terminal Island (GTI) in the BigBrain, to define its anatomical features

Histological processing and Cytoarchitectonic probability maps

- 10 human post mortem brain (5 male, 5 female)
- Sectioning, staining and digitization
- Cytoarchitectonic mapping, spatial normalization and transfer to the reference space
- Superimposition of the individual maps and probability maps calculation

Brain Collection, Forschungszentrum Juelich, Germany

FIXATION (3 months): 4% buffered formalin or Bodian's fixative

MRI imaging

Delineation (JulichBrain Section Tracer)

Sliver staining for cell bodies (each 15th)

MNI-Colin27

ICBM152 2009

Cytoarchitectonic mapping

parvicellular island

granocellular island

olfactory tubercle

Probability maps

OLFACTORY TUBERCLE

Probability maps

TERMINAL ISLANDS

Great Terminal Island 3D reconstruction in the BigBrain

- Manual expert annotations on high resolution (1μm) digitized scans
- Prediction of GTI annotations on each section based on deep learning brain mapping tool - ATLaS UI (Schiffer et al., 2021)
- Manual quality check of provided predictions
- 3D reconstruction and visualization

MicroDraw

Every 15th section

116 sections

3D reconstruction in the Big Brain

Conclusion

- The new maps provide detailed anatomical information of a complex region of the basal forebrain
- A high-resolution 3D reconstruction of the Great Terminal Island revealed its complex shape
- The new maps will support future neuroimaging studies to assess the connectivity and functions of the basal forebrain structures
- Maps are openly available through the Julich-Brain atlas available via EBRAINS

Human Brain Project

Institute of Neuroscience and Medicine (INM-1), Foschungszentrum Jülich

- Katrin Amunts
- Andrea Brandstetter
- Hartmut Mohlberg
- Christian Schiffer
- Sebastian Bludau

Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade

• Aleksandar Maliković

Thank you for your attention