brains and languages in the fantasy world of NLP

Yosef Grodzinsky

www.grodzinskylab.com yosef.grodzinsky@mail.huji.ac.il a neural explanation of language the holy grail of our business

- But what could it look like?
- A neural explanation of what exactly?
- What are the neural and behavioral variables?

NLP's answer:

- language is a huge bag of sequentially layed out words and sentences.
- To understand it, we just need to calculate probabilisties of occurrence of words and sentences in context. Nothing else is needed.
- DNNs offer the finest, most advanced and suitable tools.
- Finding the neural substrate of these tools is a breakthrough.

what I hope to do here

- A bit on what language models (GPT-2, BERT) do (but not on how they do it)
 - > what they use as their primary learning input
 - what tests they used to evaluate their models
- Connection to the brain (these DNNs are the brain's processors)
- Critique
 - representativeness of stimuli
 - > DNN performance on certain language tasks
 - psycho-biological relevance of the models' architecture
 - Where there is good fit between models' output and human signals, and where there isn't
- Hints regarding a modular, structure-based, alternative

DNNs for language: a. "unidirectional" models (GPT-2) (here: moving window of length /=4)

#	1	2	3	4	5	6	7	8	9	10	#
	The	man	asked	the	woman	to	sit	on	the	chair	
•	The	p(1/#)									
•	The	man	p(2/1)								
•	The	man	asked	p(3/1+2)							
	The	man	asked	the	p(4/1+2+3)						
	The	man	asked	the	woman	o(5/1+2+3+4)					
		man	asked	the	woman	to	p(n/n-4n-1)				
			asked	the	woman	to	sit	p(n/n-4n-1)			
				the	woman	to	sit	on	p(n/n-4n-1)		
					woman	to	sit	on	the	o(n/n-4n-1)	
						to	sit	on	the	chair	p(n/n-4n-1)

Next word prediction $p(w_n)=p(w_n/(w_{n-1} \otimes w_{n-2} \otimes \#))$

DNNs for language: b. "Bidirectional", collocations-based models (Bidirectional Encoder Representations from Transformers – BERT)

#	1	2	3	4	5	6	7	8	9	10	##
	The	man	asked	the	woman	to	sit	on	the	chair	
	p(w ₁)	man	asked	the	woman	to	sit	on	the	chair	
	The	p(w ₂)	asked	the	woman	to	sit	on	the	chair	
	The	man	p(w ₃)	the	woman	to	sit	on	the	chair	
	The	man	asked	p(w ₄)	woman	to	sit	on	the	chair	
	The	man	asked	the	p(w ₅)	to	sit	on	the	chair	
	The	man	asked	the	woman	p(w ₆)	sit	on	the	chair	
	The	man	asked	the	woman	to	p(w ₇)	on	the	chair	
	The	man	asked	the	woman	to	sit	p(w ₈)	the	chair	

 $p(w_n) = p(w_n/(w_{n-1} \otimes w_{n-2} \dots \otimes \#)) * p(w_n/(w_{n+1} \otimes w_{n+2} \dots \otimes \#))$

some i/o characteristics

- Input: sentences (labeled or unlabeled); linear but no hierarchical information
- **Sources**: strings found on the web; experimental data pertaining to 'naturally occurring' strings.
- **Output**: probability of occurrence in a specific serial position; choices among alternative sequences.
- Absent: grammatical objects or rules, distinction between grammatical and ungrammatical strings

"Every time we fire a linguist the performance of our system goes up" (Jelinek, IBM, 1985)

model assessment tasks

Tasks

- Next word prediction
- Next sentence prediction (out of choices provided)
- Very limited, corpus-based, question answering
- Related tasks on the corpus

GPT-2

- Improves on pre-training
- Ourperforms other systems

test: next word prediction in a "real-world" text – humans, machines, and brains' performance on the same inputs

Two very recent, high visibility works

Shared computational principles for language processing in humans and deep language models

Ariel Goldstein^{1,2}, Zaid Zada^{1,8}, Eliav Buchnik^{2,8}, Mariano Schain^{2,8}, Amy Price^{1,8}, Bobbi Aubrey^{1,3,8}, Samuel A. Nastase^{1,8}, Amir Feder^{2,8}, Dotan Emanuel^{2,8}, Alon Cohen^{2,8}, Aren Jansen^{2,8}, Harshvardhan Gazula¹, Gina Choe^{1,3}, Aditi Rao^{1,3}, Catherine Kim^{1,3}, Colton Casto¹, Lora Fanda³, Werner Doyle³, Daniel Friedman³, Patricia Dugan³, Lucia Melloni⁴, Roi Reichart⁵, Sasha Devore³, Adeen Flinker³, Liat Hasenfratz¹, Omer Levy⁶, Avinatan Hassidim², Michael Brenner^{2,7}, Yossi Matias², Kenneth A. Norman⁶, Orrin Devinsky³ and Uri Hasson⁶,

The neural architecture of language: Integrative modeling converges on predictive processing

Martin Schrimpf^{a,b,c,1}, Idan Asher Blank^{a,d,2}, Greta Tuckute^{a,b,2}, Carina Kauf^{a,b,2}, Eghbal A. Hosseini^{a,b}, Nancy Kanwisher^{a,b,c,1}, Joshua B. Tenenbaum^{a,c,3}, and Evelina Fedorenko^{a,b,1,3}

Goldstein et al., Nat. Neuro., 2021; Schrimpf et al., PNAS, 2021

Goldstein et al., 2021

"we provide empirical evidence that the human brain processes incoming speech similarly to an autoregressive DLM"

(Goldstein et al., NN, 2021:369)

Fig. 1 | Shared computational principles between the brain and autoregressive deep language models in processing natural language.

next-word prediction on random stories ("This American Life")

а Transcript

(Ira Glass) So there's some places where animals almost never go, places that are designed by humans for humans. This act ends up in a place like that, but it starts about as far from there as you can get. Dana Chivvis explains.

b Next-word prediction task

(Dana Chivvis) Our story begins deep in the rainforests of Indonesia on an island called Sulawesi. A few years ago, the photographer David Slater traveled there from his home in England to photograph a troop of monkeys.

С Behavior

								Probat	oility index
	:		Target	Pt_1	Pt_2	Pt_3	Pt_50	Human	DLM (GPT-2)
Prediction	51	Chivvis explains. Our story begins deep in the rainforests of	Indonesia	Brazil	far	amazon	··· south	0.02	0.01
	52	Explains. Our story begins deep in the rainforests of Indonesia	on	in	there	and	··· where	0.06	0.003
	53	Our story begins deep in the rainforests of Indonesia on	an	the	an	а	… а	0.16	0.02
Pre	54	Story begins deep in the rainforests of Indonesia on an	island	island	island	area	··· island	0.62	0.43
5	55	Begins deep in the rainforests of Indonesia on an island	called	where	called	full	··· populated	0.1	0.23
	:								

Human predictability scores versus GPT-2's predictability scores for each upcoming word in the podcast

е

ECoG data

"Electrodes (160/1,339, in 9 patients) with significant correlation at the peaked lag between predicted and actual word responses for semantic embeddings" (Goldstein et al., 2021: 373)

Schrimpf et al., 2021 fMRI & ECoG data

Artificial Neural Network (ANN) models "that perform better at predicting the next word in a sequence, also better predict brain measurements... GPT-2 consistently outperforms all other models and **explains almost all variance in both fMRI and ECOG data from sentence-processing tasks**." (Schrimpf et al., *PNAS*, 2021)

selected brain areas and stimuli

A large cluster is identified by a test

Sample materials

Condition	Example
Sentences	STEVE WAS LATE TO SCHOOL BECAUSE HE OVERSLEPT [probe: SCHOOL]
	THE RED BALLOON ROSE UP INTO THE CLOUDS [probe: WENT]
Word-lists	RAIN THE WORK BEHIND REACHED GREW KIDS OPENED [probe: GREW]
	STOOD THE TIED CANDLE INTO SHED THE QUICKLY [probe: WALLET]
Jabberwocky	THE GAR WAS SWARBING THE MUME FROM ATAR [probe: ATAR]
	TOMAL HOTHED THE BLESPY NULO DURING THE VAYLANT [probe: FLORKY]
Nonword-lists	PHREZ CRE EKED PICUSE EMTO PECH CRE ZEIGELY [probe: PHREZ] PIV WUBA WOS PAFFING DEBON TRIENED LE KIF [probe: LOME]

Skiing (passage 1)

I hesitantly skied down the steep trail that my buddies convinced me to try. I made a bad turn, and I found myself tumbling down. I finally came to a stop at a flat part of the slope. My skis were nowhere to be found, and my poles were lodged in a snow drift up the hill.

Exemplars from test materials

Schrimpf's Stimuli

Participants read semantically and syntactically diverse sentences, presented one word at a time...the datasets varied in the imaging modality (fMRI/ECoG), the nature of the *materials (unconnected sentences/* passages/stories), the grain of linguistic units to which responses were recorded (sentences/words/2-s-long story fragments), and presentation modality (reading/listening).

(Fedorenko et al., 2016)

Sample materials

Condition	Example
Sentences	STEVE WAS LATE TO SCHOOL BECAUSE HE OVERSLEPT [probe: SCHOOL]
	THE RED BALLOON ROSE UP INTO THE CLOUDS [probe: WENT]
Word-lists	RAIN THE WORK BEHIND REACHED GREW KIDS OPENED [probe: GREW]
	STOOD THE TIED CANDLE INTO SHED THE QUICKLY [probe: WALLET]
Jabberwocky	THE GAR WAS SWARBING THE MUME FROM ATAR [probe: ATAR]
	TOMAL HOTHED THE BLESPY NULO DURING THE VAYLANT [probe: FLORKY]
Nonword-lists	PHREZ CRE EKED PICUSE EMTO PECH CRE ZEIGELY [probe: PHREZ]
	[probe: LOME]

Skiing (passage 1)

I hesitantly skied down the steep trail that my buddies convinced me to try. I made a bad turn, and I found myself tumbling down. I finally came to a stop at a flat part of the slope. My skis were nowhere to be found, and my poles were lodged in a snow drift up the hill.

Schrimpf's results

"Specific ANN language models are beginning to approximate the brain's mechanisms for processing language (Middle, gray box)".

a happy conclusion

"we provide empirical evidence that the human brain processes incoming speech similarly to an autoregressive DLM." (Goldstein et al.)

"Specific ANN language models are beginning to approximate the brain's mechanisms for processing language."

(Schrimpf et al.)

What's the problem?

- Are the stimuli used representative of the range of human language?
 - Tests were on grammatically similar contexts
 - Tests presented very similar perceptual complexity
- Are DNNs similar to human speakers?
 - DNNs fail on tasks that require complex linguistic ability (Google Translate, Al21, GPT-2) the correlations drop sharply with such tasks
 - DNNs rely on gigantic training sets, but human language acquisition doesn't
- Is DNN architecture biologically relevant and **localizable in the brain**?
- ⇒ The punchline of this talk is simple: these works did not measure "language," but some generic prediction done *in the context of linguistic activity*

Adversarial examples in language: Grammaticality judgment and perceptual complexity

word prediction is highly structure-dependent Which girl do you think that girl likes John Which girl do you think John likes to play with that girl these days Have the students who failed the exam take the supplementary!

but AI modeling doesn't recognize that linguistic rules define the boundaries of language (cf. Jelinek)

(Ira Glass) So there's some places where animals almost never go, places that are designed by humans for humans. This act ends up in a place like that, but it starts about as far from there as you can get. Dana Chivvis explains. (Dana Chivvis) Our story begins deep in the rainforests of Indonesia on an island called Sulawesi. A few years ago, the photographer David Slater traveled there from his home in England to photograph a troop of monkeys.

	Language Stimuli
Pereira2018	"Beekeeping encourages the conservation of local habitats. It is in every beekeeper's interest"
Fedorenko2016	"Alex was tired so he took a nap."
Blank2014	f'If you were to journey to the North of England, you would come to a valley that is surrounded by moors as high as mountains. It is in this valley where you"

Stimuli: "Localizer sentences"

1	'NEVER'	'AGAIN'	'DID'	'HE'	'ENTER'	'INTO'	'THE'	'RITUAL'	'OF'	'SHOWING'	'THE'	'APARTMEN'
2	'THEN'	'ANGELINA'	'TURNED'	'AND'	'WITH'	'AN'	'EASY'	'GRACE'	'WALKED'	'TOWARD'	'THE'	'KITCHEN.'
3	'HE'	'SEEMED'	'ТО'	'BE'	'LOOKING'	'AT'	'A'	'POINT'	'ABOVE'	'THE'	'LITTLE'	'WINDOW.'
4	'JUST'	'THE'	'BAREST'	'SUGGESTIO	'OF'	'A'	'HEEL'	'IS'	'FOUND'	'ON'	'TEENAGE'	'PUMPS.'
5	'HIS'	'WIFE'	'WAS'	'IN'	'DELICATE'	'HEALTH'	'AND'	'NURSING'	'AN'	'INFANT'	'WITH'	'MEASLES.'
6	'THE'	'TARGET'	'CHART'	'QUICKLY'	'AND'	'BRIEFLY'	'TELLS'	'YOU'	'WHICH'	'ADDITIVES'	'DO'	'WHAT.'
7	'күото'	'IS'	'THE'	'ANCIENT'	'CAPITAL'	'OF'	'JAPAN'	'AND'	'STILL'	'ITS'	'CULTURAL'	'CENTER.'
8	'THIS'	'HAPPENED'	'IN'	'THE'	'MIDDLE'	'OF'	'A'	'DRINKING'	'BOUT'	'WITH'	'ANOTHER'	'BUM.'
9	'HE'	'SAT'	'UP'	'AND'	'WATCHED'	'AS'	'THEY'	'PULLED'	'THEMSELVE	'OVER'	'THE'	'STERN.'
10	'MIKE'	'PASSED'	'THROUGH'	'IT'	'AND'	'MOVED'	'TOWARD'	'THE'	'DARK'	'MASS'	'OF'	'HORSES.'
11	'AT'	'ONCE'	'A'	'BEVY'	'OF'	'DOGS'	'WAS'	'SNAPPING'	'AND'	'SNARLING'	'AROUND'	'HIM.'
12	'IT'	'WAS'	'A'	'ROUGH'	'LONG'	'RIDE'	'THROUGH'	'THE'	'MUD'	'AND'	'POT'	'HOLES.'
13	'I'	'WENT'	'ТО'	'VISIT'	'ALFRED'	'IN'	'THE'	'KINGSTON'	'HOSPITAL'	'A'	'FEW'	'TIMES.'
14	'IF'	'WE'	'LOOK'	'AT'	'RECENT'	'ART'	'WE'	'FIND'	'IT'	'PREOCCUPIE	'WITH'	'FORM.'
15	'THE'	'REPORTER'	'NODDED'	'AS'	'HE'	'MOVED'	'UP'	'BESIDE'	'HIM'	'AT'	'THE'	'BAR.'
16	'IN'	'THE'	'STARLIGHT'	'HE'	'COULD'	'SEE'	'THE'	'TREES'	'STRIPPED'	'OF'	'THEIR'	'LEAVES.'
17	'I'	'WAS'	'HELD'	'UP'	'A'	'BIT'	'TRYING'	'ТО'	'MAKE'	'A'	'LEFT'	'TURN.'
18	'THE'	'OTHER'	'PATRONS'	'WERE'	'TAXI'	'DRIVERS'	'AND'	'ART'	'STUDENTS'	'AND'	'SMALL'	'SHOPKEEPE
19	'HE'	'SAT'	'DOWN'	'ON'	'AN'	'OLD'	'BOX'	'AND'	'FOCUSED'	'ON'	'THE'	'PROBLEM.'
20	'THIS'	'IS'	'AN'	'ASSUMPTIO	'WITH'	'WHICH'	'FEW'	'WOULD'	'BE'	'DISPOSED'	'ТО'	'QUARREL.'
21	'THERE'	'ARE'	'THOUSAND	'OF'	'SQUARE'	'MILES'	'OF'	'SALT'	'PAN'	'WHICH'	'ARE'	'HIDEOUS.'
22	'HE'	'STOPPED'	'PACING'	'TO'	'STARE'	'AT'	'HAL'	'WITH'	'HIS'	'PALE'	'BLUE'	'EYES.'
23	'A'	'NUMBER'	'OF'	'CONSIDERA	'SUGGEST'	'THAT'	'THIS'	'OCCURS'	'EARLY'	'IN'	'THE'	'PROCESS.'
24	'IT'	'IS'	'VERY'	'MUCH'	'A'	'MATTER'	'OF'	'BUILDING'	'THE'	'FOUNDATIC	'OF'	'COMMUNIT

12-words long; changing number of syllables; arbitrarily selected meanings; a narrow variety of syntactic types

Stimuli

Participants read semantically and syntactically diverse sentences, presented one word at a time...the datasets varied in the imaging modality (fMRI/ECoG), the nature of the *materials (unconnected sentences/* passages/stories), the grain of linguistic units to which responses were recorded (sentences/words/2-s-long story fragments), and presentation modality (reading/listening).

(Fedorenko et al., 2016)

A single contrast (Ss vs. scrambled words)
⇒ all sentences led to similar brain
activity (against an uneven baseline)

• Hardly any

- complex sentences embeddings
- logical operators (negations,
- disjunctions, modals, quantifiers)
- \circ ellipsis
- ambiguities syntactic and semantic
- No questions
- \Rightarrow Complexity was not measured
- No weighting of the stimulus materials

failure to detect ungrammaticality that requires complex rules

	$\overline{}$			\bigcirc	
	RNN	Multitask	<i>n</i> -gram	Humans	# sents
SUBJECT-VERB AGREEMENT:					
Simple	0.94	1.00	0.79	0.96	280
In a sentential complement	0.99	0.93	0.79	0.93	3360
Short VP coordination	0.90	0.90	0.51	0.94	1680
Long VP coordination	0.61	0.81	0.50	0.82	800
Across a prepositional phrase	0.57	0.69	0.50	0.85	44800
Across a subject relative clause	0.56	0.74	0.50	0.88	22400
Across an object relative clause	0.50	0.57	0.50	0.85	44800
Across an object relative (no that	0.52	0.52	0.50	0.82	44800
In an object relative clause	0.84	0.89	0.50	0.78	44800
In an object relative (no <i>that</i>)	0.71	0.81	0.50	0.79	44800
Reflexive anaphora:					
Simple	0.83	0.86	0.50	0.96	560
In a sentential complement	0.86	0.83	0.50	0.91	6720
Across a relative clause	0.55	0.56	0.50	0.87	44800
NEGATIVE POLARITY ITEMS:					
Simple	0.40	0.48	0.06	0.98	792
Across a relative clause	0.41	0.73	0.60	0.81	31680

Marvin & Linzen, Proc. ACL, 2018

A General Language Understanding Evaluation (GLUE) benchmark uncovers failure (Schrimpf)

	Wang et al., <i>IRCL</i> , 2019										
Corpus	Train	Domain									
	Single-Sentence Tasks										
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews						
Similarity and Paraphrase Tasks											
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions						
			Infere	ence Tasks							
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books						

"Model performance on diverse benchmarks from the GLUE suite of benchmarks, including judgments about syntactic and semantic properties of sentences, was not predictive of brain or behavioral scores" (Schrimpf, 2021)

"Model performance on a next-word-prediction task selectively predicts brain scores" Schhrimpf et al., Fig. 3

A General Language Understanding Evaluation (GLUE) benchmark uncovers failure (Schrimpf)

"Model performance on diverse benchmarks from the GLUE suite of benchmarks, including judgments about syntactic and semantic properties of sentences, was not predictive of brain or behavioral scores" (Schrimpf, 2021)

"Model performance on a next-word-prediction task selectively predicts brain scores" Schhrimpf et al., Fig. 3 puzzling psycho-biological properties of the models: size of dataset in AI training and in human development

• The size of training sets in AI and in human language acquisition AI: The GPT-2 model has 1.5 billion parameters; it was trained on 8m web pages #words in a web page (10-25K), i.e., ~80 billion sentences

A 4-year old child: (18000 x 30 x 48) / 8= 3.24 million sentences W/Day /Mo. #mo. W/S

At age 4, children master almost all of complex syntax

what children can do at age 3: VP-ellipsis

He drove a bus and Dennis drove a bus He drove a bus and Dennis *did, too [drive a bus]*

*CHI (Age 3): what kind of bus does he have?

*MOT: he has a Volkswager bus.

*CHI: Dennis does **too**.

*MOT: that's right Gary and Dennis have the same car.

*CHI: uhhuh [=yes]

DNNs has no biological feasibility with respect to training sets/acquisition

Grodzinsky et al., OUP, 2020

Selective deficits in aphasia: The shape of the syntax comprehension disorder

Same words, same meaning, different syntax

psycho-biological relevance of the models' architecture: neural specificity of complex syntax (once much noise is removed)

semantics: the neural cost of (implicit) negation

Id7 (Insular dysgranular area 7)

cluster

More than half of the circles are blue

Less than half of the circles are yellow

comparing Id7's locus to the language regions

No overlap with the Broca's region

Application: intra-operative navigation with these materials

Onconeurosurgical Unit, Uniklinik Düsseldorf

Test goal: maximize resection; minimize functional loss Test procedure:

- 1. Pre-OP determination of stimulation points.
- 2. Patient is awakened.
- 3. Direct Electrical Stimulation with a concomitant linguistic stimulus.
- 4. Results are displayed, supporting surgical decisions.
- 5. Tests: words, syntax, semantics.

the semantic Polarity intra-op test, aimed to improve functional resolution – *more/less*

Onconeurosurgical Unit, Uniklinik Düsseldorf

1 Auf dem Bild sind weniger rote al								bla	aue F	.			
	•	•	•	•	•				•	•	•	•	
	•	•	•	•	•				•	•	•	•	
	•	•	•	•	•		•	•	•	•	•	•	

a syntactic recognition intra-op test, aimed to improve functional resolution – questions

conclusions

- Next word prediction is a task that hardly probes language
- DNNs have thus far been successful on everyday tasks, but have failed to exhibit serious human-like behavior
- The human brain exhibits a modular functional anatomy
- The studies noted above blur the both function and anatomy
- With a bit of luck, this modular approach can even be clinically useful
- "I've never fired anyone, and a linguist least of all"

(Jelinek, 2005)

the end yosef.grodzinsky@mail.huji.ac.il

	Isabe	elle Deschamps	Québec					
Funding:	Galit	Galit Agmon, Yonatan Loewenstein						
	Andre	Andreas Haida, I-An Tan, Assaf Brown						
NIH (NIDCD)	Kedel	m Snir	HUJI					
Canada Research Chairs (CRC)	Katrii	n Amunts, Stefan Heim,						
Canadian Social Science and Humanities	Franc	Francesca Ianilli, Peter Pieperhoff,						
	Christ	tiane Jockwitz , Svenja Caspers,						
Research Council (SSHRC)	🥐 Nora	Bittner	FZ Jülich					
Humboldt Foundation Research Award	Alexander von Humboldt Stiffung/Foundation Marc	Marcel Kamp, Marion Rapp, Michael Sabel						
Forschungszentrum lülich				Uniklink Düss				
r orschungszentrum sunen	Virgir	nia Jaichenco, María Elina Sánc	hez					
ELSC, HUJI	ELECTRON LIV. School		L	J. Buenos Air				
Israel Science Foundation								