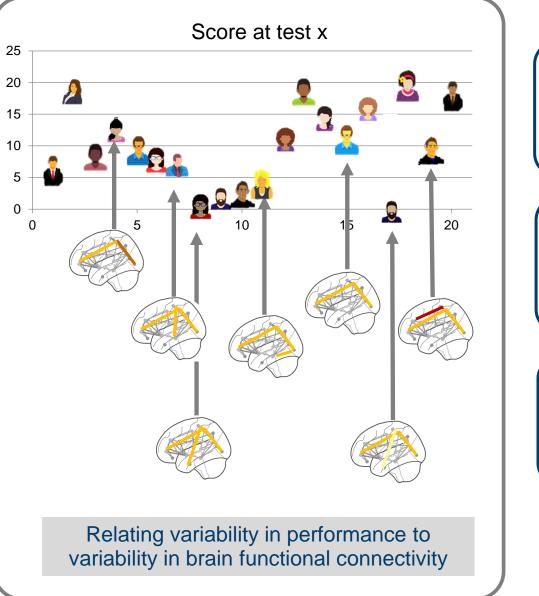
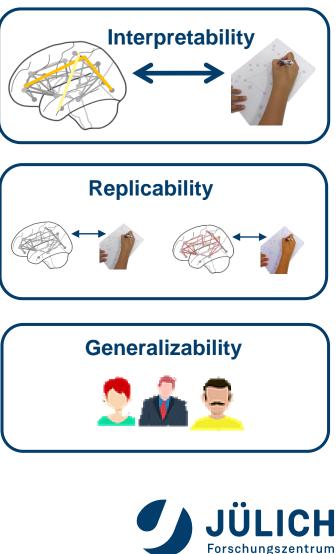
Generalizability of connectome-based predictive models

Sarah Genon Cognitive NeuroInformatics Lab Research Centre Jülich (INM-7)

Connectivity-based psychometric prediction

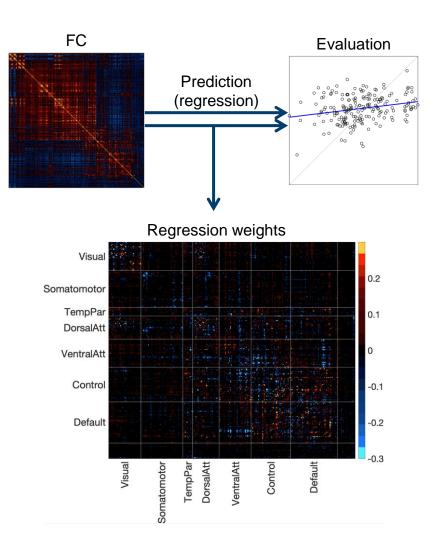




Predictive models of psychometric data

Interpretability /neurobiological validity issue

- Hypothesis-driven approach: a priori selection of specific regions/networks for the prediction
- **Data-driven approach**: How do we characterize each region/parcel's association to a psychometric variable?
- Weight magnitude does not reflect the regions' association strength with the psychometric variable
- Hard to get neurobiological insights

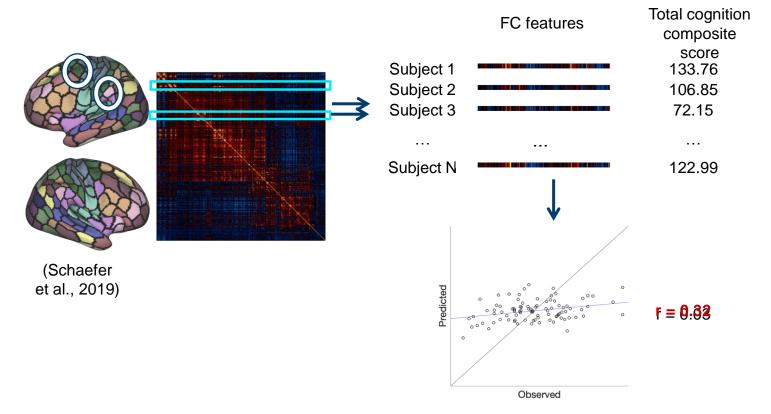


Wu,...,& Genon, 2021, Cerebral Cortex

Predictive models of psychometric data: interpretability

A region-based approach

• One predictive model for each brain region/parcel

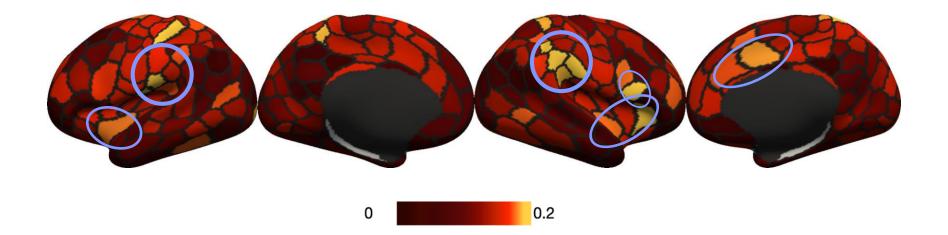


Wu,...,& Genon, 2021, Cerebral Cortex

Predictive models of psychometric data: interpretability

Prediction Performance Distribution

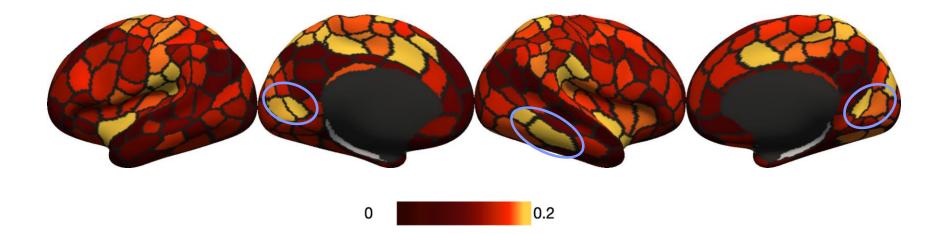
(working memory) 2-back task accuracy



Predictive models of psychometric data: interpretability

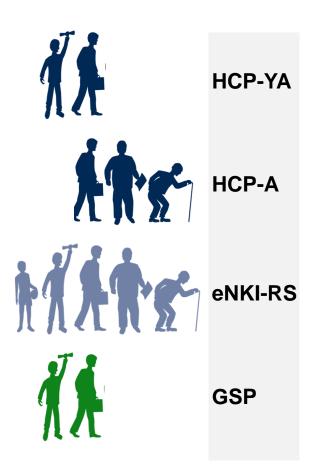
Prediction Performance Distribution

(working memory) 2-back face task accuracy



Predictive models of psychometric data: replicability of brain-behavior patterns

Cross-dataset replicability of brain predictive patterns for fluid cognition

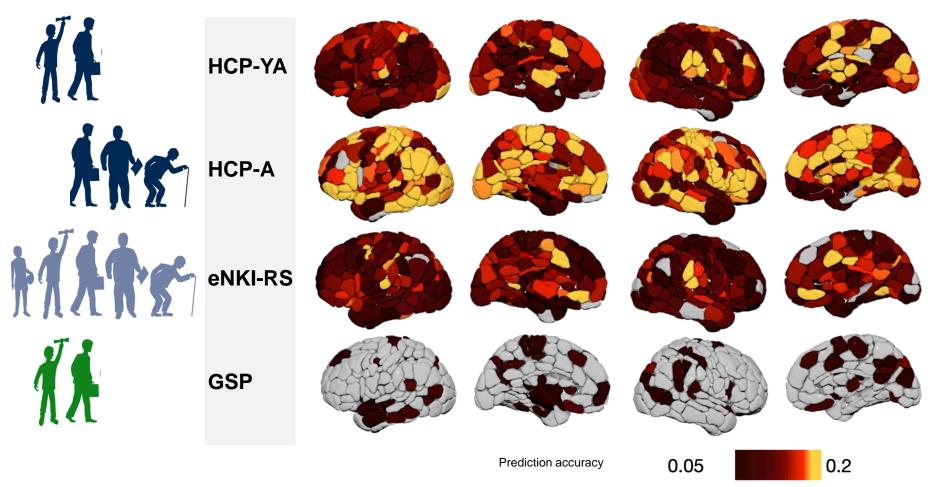


Mitglied der Helmholtz-Gemeinschaft

Wu,...,& Genon, in press, NeuroImage

Predictive models of psychometric data: replicability of brain-behavior patterns

Cross-dataset replicability of brain predictive patterns for fluid cognition



Wu,...,& Genon, in press, NeuroImage

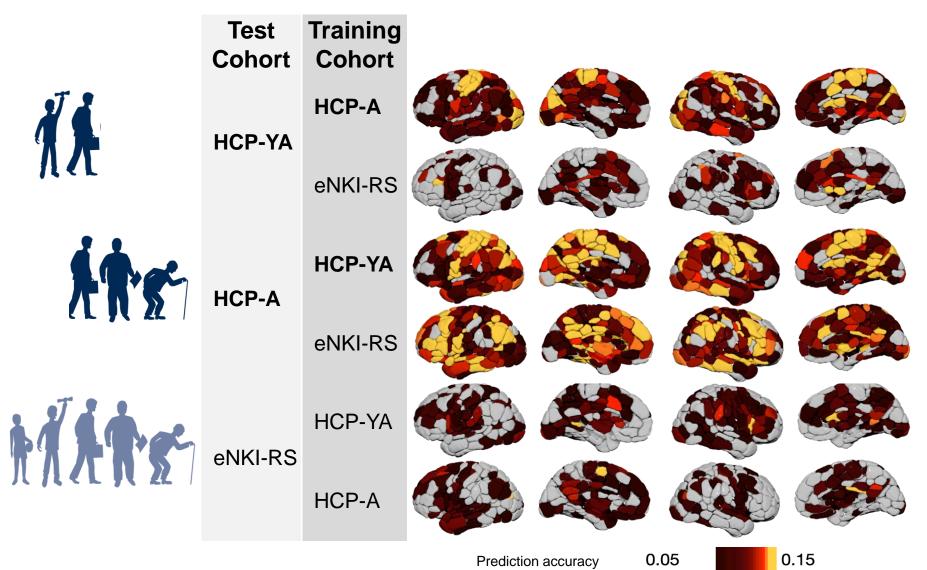
Predictive models of psychometric data: cross-dataset generalizability

Cross-dataset generalizability of fluid cognition

	Test Cohort	Training Cohort
	HCP-YA	HCP-A
μn		eNKI-RS
HCP-A	HCP-YA	
		eNKI-RS
HARS-	eNKI-RS	HCP-YA
		HCP-A

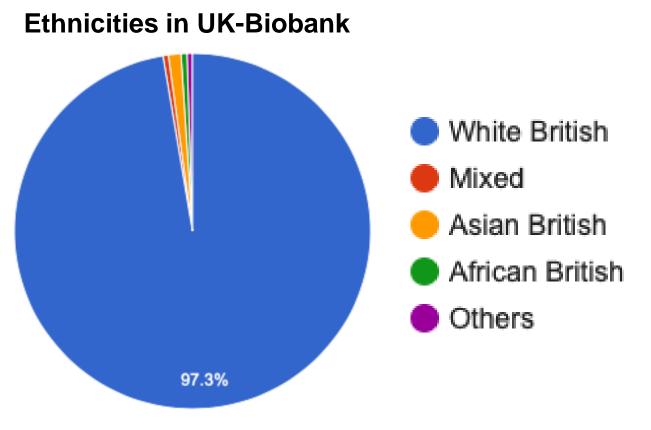
Predictive models of psychometric data: cross-dataset generalizability

Cross-dataset generalizability of fluid cognition



Predictive models of psychometric data

Underrepresented populations in neuroimaging datasets



Mitglied der Helmholtz-Gemeinschaft

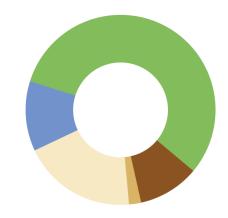
Human Connectome Project (HCP)

- N = 948; 22-37years
- 58 behavioral measures
- #WA = 721, #AA = 129

- White Americans (76.1%)
- African Americans (13.6%)
- Asian / native Hawaiian / other Pacific Islander (6.2%)
- Indian Americans / Alaskan natives (0.2%)
- Mixed (2.3%)
- Unknown (1.6%)

Adolescent Brain Cognitive Development (ABCD)

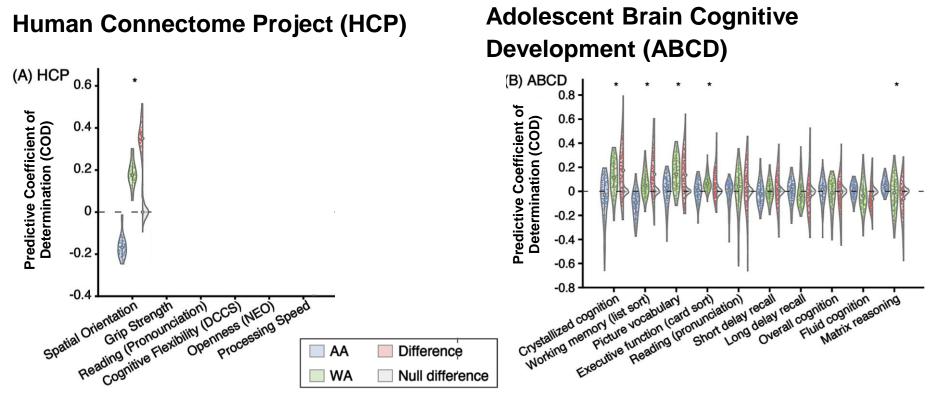
- N = 5351; 9-11years
- 36 behavioral measures
- #WA = 2997, #AA = 642





Li,..., & Genon, 2022, Science Advances

LARGER PREDICTION ERROR IN AFRICAN AMERICANS THAN MATCHED WHITE AMERICANS



Only predictable behavioral measures are shown here.

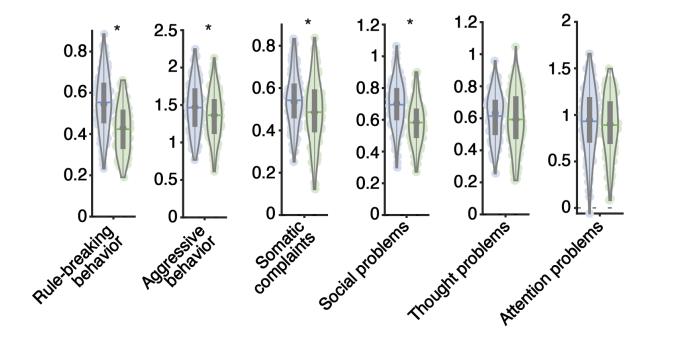
Similar pattern by looking into all behavioral measures, or regressing different confounds, or modelling with a different algorithm.

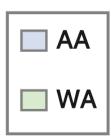
Mitglied der Helmholtz-Gemeinschaft

Li,..., & Genon, 2022, Science Advances

DIRECTION OF PREDICTION ERROR & POTENTIAL CONSEQUENCES

Predicted – observed behavioral scores





ABCD data - Achenbach Child Behavior Checklist

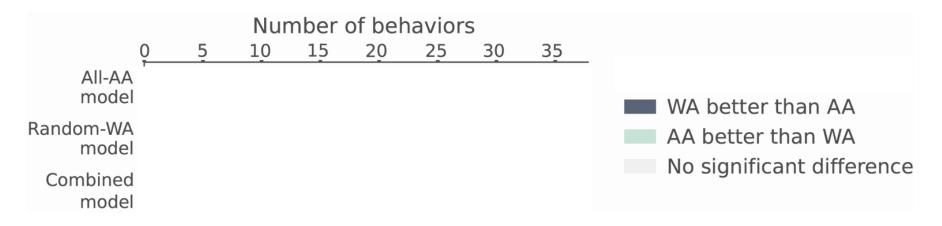
Mitglied der Helmholtz-Gemeinschaft

EFFECTS OF TRAINING POPULATION

ABCD dataset

Compare 3 types of models, trained on:

- a. AA only
- b. WA only (same sample size as AA)
- c. Half AA, half WA (combination of a. & b.)

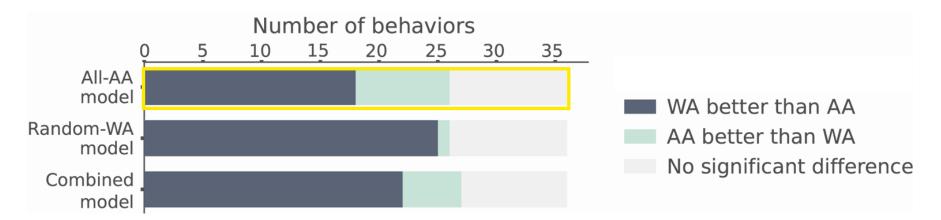


EFFECTS OF TRAINING POPULATION

ABCD dataset

Compare 3 types of models, trained on:

- a. AA only
- b. WA only (same sample size as AA)
- c. Half AA, half WA (combination of a. & b.)



- Training only on AA helped to reduce prediction bias against AA
- Prediction accuracy was still in favor of WA
 - Brain Imaging side: preprocessing strategies/parameters were optimized on white-dominated samples (e.g. brain templates, functional atlases)
 - Behavioral side: standard measures (or tools) suitable / valid for minorities?
- Call for more data collection from non-European-descendant / non-white populations, to learn better representation of minor populations.

Consider even more minor groups (e.g. native Americans in the US population) Africans in Africa \neq African Americans

- Subgroups in the currently defined ethnic/racial categories (e.g. Chinese vs Indian, both as "Asian") Be aware of similar issue in other countries (e.g. Chinese datasets dominated by Han) Other minority groups, e.g. lower social class
- > Assess & promote fairness of future artificial intelligence applications across populations.

Thank you

Düsseldorf (Germany)

Katrin Amunts Svenja Caspers Simon Eickhoff Nicola Palomero-Gallagher

GIGA-ULiege (Belgium)

Steven Laureys Gilles Vandewalle Eric Salmon Christina Schmidt

UCL Brussels (Belgium)

Julie Duque

Neurospin/INRIA (France)

Bertrand Thirion Demian Wassermann

Mitglied der Helmholtz-Gemeinschaft

UCL (UK)

Janaina Mourao-Miranda Agoston Mihalik

WashU (USA) Aris Sotiras

Yale University (USA)

Todd Constable Avram Holmes

NUS (Singapore)

elmholtz Portfolio Theme

Supercomputing Modeling for the Human Brain

Thomas Yeo

Cognitive NeuroInformatics Lab

DFG

