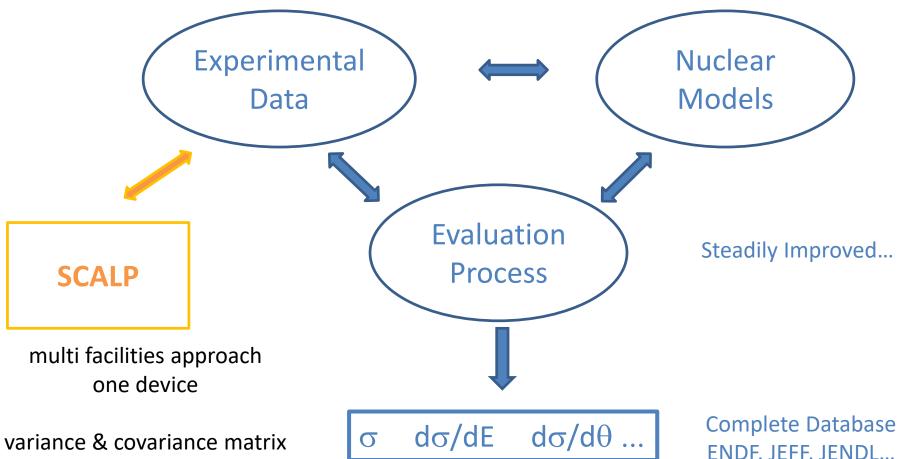


The SCALP collaboration (LPC Caen, CEA, EAMEA, GANIL)
Spokesperson: LECOLLEY F.-R.

SAC - nELBE - SCALP - 02/06/2022



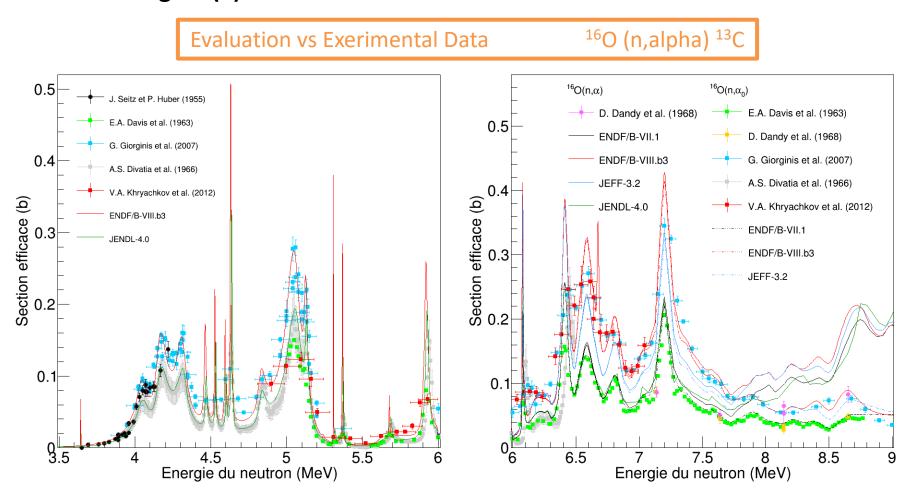
SCALP Scientific context - Nuclear data for nuclear energy

resonance parameter

ENDF, JEFF, JENDL...

SCALP Main goal (1)

at the beginning...


$^{16}\mathrm{O}(n,\alpha)^{13}\mathrm{C}$	measurement and evaluation	
	(n,alpha) reactions of interest for nuclear reactors	
	• from threshold up to 20 MeV	

Motivation

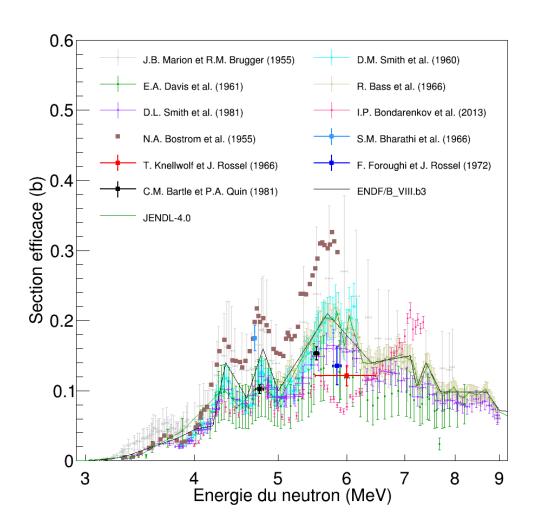
- NEA: HPRL & WPEC 26 (2005) & WPEC 40 (CIELO, 2015)
- sensitivity analysis (WPR, FR)
- large discrepancies (up to 30%)
- helium formation in fuel assemblies (± 7%)
- > neutron multiplication factor (± 100 pcm)

SCALP Main goal (1)

SCALP Main goal (2)

... buy product and/or background...

19 F(n, α) 16 N	 measurement and evaluation 	
	 (n,alpha) reactions of interest for nuclear reactors 	
	• from threshold up to 20 MeV	


Motivation

- no requirement
- no sensitivity analysis but potential interest for MSR
- large discrepancies (up to a factor 3)
- dominant contribution in our setup
- input parameter for nuclear models used in the evaluation process

SCALP Main goal (2)

Evaluation vs Exerimental Data ¹⁹F (n,alpha) ¹⁶N

SCALP Main goal (1 & 2)

 $^{16}\text{O}(\text{n},\alpha)^{13}\text{C}$

 19 F(n, α) 16 N

Large discrepancies

measurement vs measurement measurement vs evaluation evaluation

underline the need of new measurements

new setup multi facilities approach variance & covariance matrix, resonance parameter

new data sets for the theoretical approach and the evaluation process

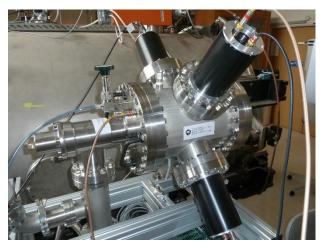
SCALP Experimental device – Brief description

the SCALP detector

active gaseous target − CF₄ or CF₄ + CO₂(3%)

• ionization chamber & 4 PM Tubes 123 x 123 x 125 mm³, 0 to 2 bar

deposited energy resolution

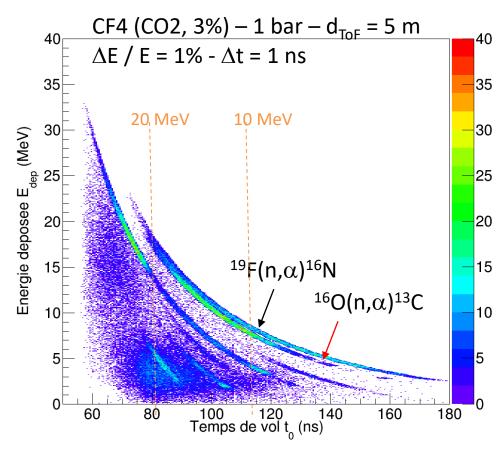

± 150 keV [CF₄]

 \pm 220 keV [CF₄ + CO₂(3%)]


detector timing resolution

± 250 ps [CF₄]

 \pm 700 ps [CF₄ + CO₂(3%)]



SCALP Experimental device – Response simulation (GEANT4 + ENDF/B-VII)

	Q (MaV)	Es (May)
	(MeV)	(MeV)
$^{19}F(n,\alpha)^{16}N$	-1,52	1,61
$^{16}O(n,\alpha)^{13}C$	-2,22	2,36
$^{19}F(n,p)^{19}O$	-4,04	4,25
$^{19}F(n,d)^{18}O$	-5,76	6,08
$^{12}C(n,\alpha)^9Be$	-5,70	6,18
$^{19}F(n,t)^{17}O$	-7,56	7,96

unambiguous identification and selection of the reaction channel of interest

SCALP Experimental program

one setup, different ToF facilities

Those two steps are mandatory:

- we need measurement with pure CF4 in order to be able to remove background events coming from reaction on either fluorine or carbon when measuring with a mixture of CF4 and CO2,
- it will allow us to make comparison with the measurements performed at NFS in term of time-of-flight and energy resolution, data processing to retrieve (n,alpha) reaction, background contribution and its subtraction, systematic effects,
- it will also give us access to the (n,alpha) cross-section on fluorine 19 and oxygen 16 with two different facilities.

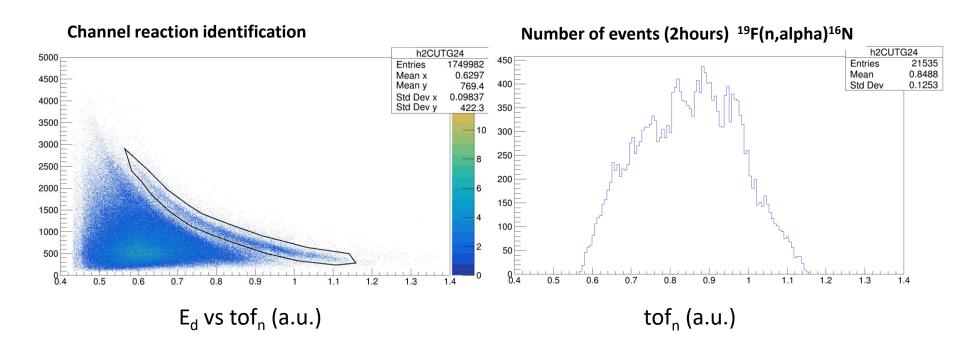
 19 F(n, α) 16 N, 16 O(n, α) 13 C – new submission

1) with pure CF4 4 days (1% stat.err)

2) with a gas mixture CF4 – CO2 (3%) 10 days (3% stat.err)

with a break of at least 2 weeks to perform the gas exchange

at the GELINA facility (Geel, Belgium)


¹⁹F(n, α)¹⁶N – accepted, waiting for scheduling

at the NFS facility (Caen, France)

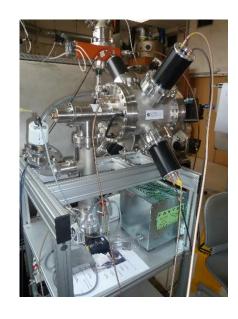
 19 F(n, α) 16 N, 16 O(n, α) 13 C – accepted, perform in october 2021

SCALP First measurement at NFS (Spiral2, GANIL, France)

time of flight resolution of 1.2 ns with a flight path of around 30 m
500 ps our PMTs + 1ns RF signal
neutron energy resolution better than 1%
resonance parameter

To summarize...

SCALP detector is already fully operational


Measurements were performed at NFS

Preliminary results are very encouraging

Two measurements are envisaged at nELBE

CF4 – (n,α) on fluorine 19 (4 days, 1%)

CF4 + CO2 (3%) – (n,α) on oxygen 16 (10 days, 3%)

The SCALP collaboration

LPC Caen A. Chevalier (PhD) F.-R. Lecolley, J.-L. Lecouey,

G. Lehaut, N. Marie

EAMEA L. Manduci

CEA Cadarache O. Bouland, O. Serot

GANIL X. Ledoux