

Stanford University

LCLS-II-HE SRF Gun Project

Rong Xiang In name of SRF-gun group, <u>ELBE</u>

Rong Xiang I HZDR

Acknowledgements

Collaborators in the LCLS-II-HE SRF gun project

- SLAC: C. Adolphsen, R. Coy, J. Fuhao, G. Hays, R. Legg, J. Lewellen,
 D. Li, G. Lixin, C. Mayes, C. Mitchell, M. Murphy, C-K Ng, Y.
 Nosochkov, T. Raubenheimer, M. Ross, M. Santana, X. Wang,
 M. Woodley, F. Zhou
- MSU/FRIB: C. Compton, Y. Choi, W. Hartung, S-h. Kim, S. Lidia, S.J. Miller, J. Popielarski, L. Popielarski, K. Saito, T. Xu
- HZDR: A. Arnold, P. Evtushenko, P. Murcek, J. Teichert, R. Xiang
- Argonne: M. Kelly, P. Piot

Outline

- 1. Background
- 2. Introduction and Status
- 3. HZDR contribution
- 4. Schedule and milestone

Rong Xiang I HZDR

1. Background

SLAC is going to build a **low emittance LCLS-II-HE Injector (LEI)** to extend photon energy range of XFEL, enabling broader photon physics program.

1. Background

New beamline for LEI will be parallel to the present LCLS-II injector

J. Lewellen, T. Xu et al., P3 workshop2021 SLAC, 10-12.10.2021

LCLS-II-HE SRF gun project for 3.5 years (2021.10 – 2025.02). Goal: to build a prototype "beyond state-of-art SRF gun". HZDR responsible for the cathode & load-lock system.

LCLS-II-HE SRF gun design parameters

Parameters	Final Design Value
cavity frequency	185.7 MHz
cathode field	30 MV/m
photo-cathode	Alkali Antimonide
bunch charge	100 pC
Emittance @ 100 MeV	< 0.1 µm @ 100pC
Laser wavelength	515 nm
Laser flattop pulse length	10-30 ps
Cryo-system mechanically decoupled from cavity string	
185.7 MHz QWR	
HZDR Style Cathode System	
Bottom up with Room temperature strong back	

Laser wavelengt Laser flattop pul Cryo-system mechanically decoupled from cavity string 185.7 MHz QWR HZDR Style Cathode System Bottom up with Room temperature strong back

> Member of the Helmholtz Association Rong Xiang I HZDR

185.7MHz SC Cavity

- Optimize field distribution
- Modify multipacting performance
- Stress calculation, manufacturability

Preliminary design finished in April 2022

- Cavity processing plan
- Cryomodule, SC solenoid, coupler
- Clean room assembly plan
- RF, Cryogenic, vacuum, interface ...

Y. Choi, April 2022 SRF Gun Preliminary Design Review, 7, Slide 6

3. HZDR contribution

Cooperating with MSU for a **new cathode stalk**

- Two working modes: 77 K and room temperature
- DC bias -5kV to suppress Multipacting
- Cathode position adjustment
- Simulate resonant mode, MP, RF loss, thermal performance...
- Test platform building at MSU

3. HZDR contribution

Cathode and load-lock system

- Particle free operation
- Ultra high vacuum 1x10⁻¹⁰ mbar
- 100 µm accuary in 1.3 m distance

19

- Repeatable, reliable
- Test platform at HZDR

Cathode held by manipulator

insertion system

Cathode stalk in cavity

S. Gatzmaga, P. Murcek

4. Schedule and Milestone

Overall project schedule 2021.10 – 2025.02

Rong Xiang I HZDR

Possible SRF gun structures

R.Xiang, IPAC21

SRF guns in operation

Other SRF guns in developing

DESY SRF gun

HZB SRF gun

KEK SRF gun

PKU DC SRF gun

