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Werner, A. (1905), Berichte der Deutschen Chemischen Gesellschaft  

38, 914-21 
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Early universe A human being 

Elemental composition 
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Stars as Nuclear Furnaces 
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TALKS by C. Sneden, 

and A. Tumino, later 
today 
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Solar System Composition 
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Primordial Nucleosynthesis: ~ some minutes after the Big Bang... 

This composition remained almost “frozen” during several Myr, until  

the first stars formed and started to pollute the Cosmos 

         TAKE AWAY BOX (I)  
 
Big Bang Nucleosynthesis  
only produced: 
 

                75% H 

                   25% 4He 
+ traces of D, 3He, 7Li  ( ≤ 10-7 %!) 
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The idea that elements could be synthesized in stellar environments 

was developed in the mid 1940s by F. Hoyle (following early work on 

1920/30s by Bethe, Gamow, von Weizsäcker, and others…) 

P.W. Merrill detected technecium (1952) in several S stars  Tc has 

no stable isotopes (longest lived: τ ~ 4 Myr): Stellar nucleosynthesis  
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Star-Forming Regions  
(aka Stellar Nurseries) 



Structures at equilibrium: 

Gravity                Pressure (Temperature) 

 

                            Thermonuclear fusion 

                                                                     reactions 
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Only objects with M > Mmin, star   become “stars” (i.e., powered by nuclear 

reactions) 

                    Planets                   Stars 



       Our Sun releases about 1026 W 
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Our Sun (and any star, in general) is powered by nuclear reactions 

4 H  4He; 26.7 MeV = 

        4.3×10-12 J 

[0.0000000000043 J] 

This suggests than 1 nuclear 

reaction releases only a tiny  

amount of energy 

Therefore, many (MANY!)  

nuclear reactions should take 

place simultaneously to account 

for 1026 J/s ! 

[1 000 000 000 000 000 000 000  

000 000 J per second] 
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But why not all the H in the 

Sun undergoes nuclear fusion  

at the same time (i.e., why 

the Sun does not blow up?) 

Quantum tunneling! 

ALL STARS, at the beginning of their cosmic journey, are powered by 

H fusion reactions [EXERCISE 1. Find out that our Sun burns about 

600 million tons of H per second!] 

An ultra-”shallow” image of the Sun... 

TALK by A. Tumino, 
later today 
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Stars produce γ-ray photons  
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Stars produce γ-ray photons  

In the Sun, during their trip towards the photosphere (τ ~ 104 - 106 yr), 

these γ-ray photons lose energy and emerge as visible photons 
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At the Sun’s core, the hydrogen content has decreased from        

X = 0.71  0.34 (Y = 0.27  0.64), according to the standard 

solar model [at the surface, diffusive settling has increased the 

hydrogen mass fraction by 0.02 or so]  these compositional 

changes are responsible for a 40% increase in Lsurf  and 10% in R. 
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The Sun will only undergo two sequential fusion stages: H and He 

fusion  (CO-rich) white dwarf star 

In the process, however, the Earth will be destroyed (in about 4 – 5 

Gyr from now; no rush!)  

Stars and Bytes 
Nuclear Astrophysics as Seen by an Stellar Modeler 
 



JJ (2016) Site of s-process  



Examples of Planetary Nebulae 



Only massive stars (M > 10 MSun) undergo the full sequence of fusion 

stages: H  He  C  Ne  O  Si  (which yields Fe-peak nuclei) 
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         TAKE AWAY BOX (II) 
  
Intermediate-mass elements, 
such as He, C, O, … Fe  are 
synthesized by stars during the 
different fusion stages 
encountered in their “normal” 
evolution 
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Fusion Fission 
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A Primer on Stellar Evolution  

Brown  
Dwarf 

Burn H 

He WD 

CO WD 

ONe WD 

Burn He 

Burn C 

Burn Ne,  
 O & Si 

Mass (M) 

     SN II  
(+ NS/BH) 

0.08 0.25 8 10 

Initial Mass Function:  

N ~ M(M)-2.5 
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M ≤ 10 MSun 

M > 10 MSun 

Type II 

M < 1.4 MSun 

R ~ 103 – 104 km 

M < 2 – 3 MSun 

R ~ 10 km 
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About 50% of the stars of our Galaxy form double or multiple 

systems… 
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A fraction of which evolve into a compact binary system 

(containing a white dwarf or a neutron star) 
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Type Ia (or thermonuclear) Supernovae [SN Ia]                

Classical Nova Outbursts [CN] 

 

X-Ray Bursts [XRBs]:  

WD 

NS 



Stellar Mergers and Collisions 

Detonations in WD dynamic interactions 

Aznar-Siguán, García-Berro, Lorén-Aguilar, JJ & 
Isern, MNRAS (2013)  

Guerrero, García-Berro & Isern, A&A (2004)  
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frequency ~ f(Supernovae Ia) 
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Head-on collision of two neutron stars  

(R. Cabezón, D. García-Senz et al., UPC Barcelona)  
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From S. Goriely (ULB) 
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                            TAKE AWAY BOX (III) 
  
Elements heavier than Fe (Ni) are synthesized mostly 
by neutron-capture reactions (s- and r-process). 
Secondary channels include proton-captures (rp-
process) or photodisintegrations. 
 
S-process mostly occurs in AGB stars 
R-process sites are controversial: neutron star mergers 
                                                       vs SN II  
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A nova is a thermonuclear explosion driven by mass transfer onto a 

WD in a close binary system (Porb ~ 1 – 50 hr, mostly 3 – 4 hr).  

Observed in all λ’s (but detected in γ-rays only at E > 100 MeV)   

 

Moderate rise times (<1 – 2 days),  

    LPeak ~ 104 – 105 L  

      Eoutput ~ 1045 ergs   
 

WD + MS (often, K-M dwarfs),  

        WD + RG 

Mass ejected: 10-7 – 10-4 M   

                                  (~103 km s-1) 

Recurrence: ~ 1 –  100 yr (RNe) to  

                        104 – 105 yr (CNe) 

Frequency:     

                   [Obs. ~ 10 yr-1] 

Classical Novae 
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Main nuclear uncertainties: [18F(p,α)15O, 25Al(p,γ)26Si, 30P(p,γ)31S] 
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Nuclear uncertainties  
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Strohmeyer & Bildsten (2002) 
4U 1728 –34,  RXTE 

Main uncertainty: contribution to interstellar abundances? 
[ejection unlikely] 

 

Prominent emitters in X-rays [discovered in the 1970s; 

Babushkina et al., Grindlay et al., Belian, Conner & Evans] 

 

Very fast rise times (1 – 10 s), Lpeak ~ 104 – 105 L 

α  = Lpersistent/Lburst ~ 100 

E ∼ 1039 ergs (in 10 - 100 s)  

 

Stellar binary systems: NS + MS  

Recurrence time: ~ hr – days  

About 100 Galactic sources discovered  

Type I X-Ray Bursts 



XRB Model 

1.4 M, 1.8 10-9 M.yr-1, Z=0.02 

Type I XRB: JJ, Moreno, Parikh & Iliadis (2010), ApJS 
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~ 50,000 post-processing calculations   

606 isotopes (1H to 113Xe) and 3551 nuclear processes 
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Nuclear Uncertainties 
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Supernovae: the Mother of all Stellar Explosions 

* Thermonuclear supernovae (SN Ia): exploding white dwarfs in  

binary systems (no remnant left) 

* Core collapse supernovae (SN II, SN Ib/c): exploding massive  

stars (M ≥ 10 M) (neutron star or black hole remnant) 

                  

 

                         v ∼ 104 km/s,  E ∼ 1051 erg, Mej ≥ M 

SN 1994D (SNIa) 
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* homogeneity: only ∼70% of all SN Ia have similar spectra, light 

curves and peak absolute magnitudes (Li et al. 2011): diversity of 

SNIa progenitors? 

 

* Scenario: not understood  single degenerate (WD + MS 

companion) vs double degenerate (WD + WD) 

 

* Propagation of the burning 

   front: subsonic vs supersonic 

   (what causes the predicted  

   deflagration /detonation transition?) 

Type Ia Supernovae – problems, challenges, & mysteries 
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Nucleosynthesis: five burning regimes: “normal” and “α-rich” 

freeze-out from nuclear statistical equilibrium (NSE) in the inner 

regions, and incomplete Si-, O-, and C/Ne-burning in the outermost 

layers (Thielemann et al. 1986; Woosley 1986) 
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Parikh, JJ, Seitenzahl & Röpke,  
A&A (2013) 

443 isotopes (H − Kr); 5267 links 

* main Fe factories   
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Parikh, JJ, Seitenzahl & Röpke,  
A&A (2013) 

W7 DDT W7+DDT 
Nuclear Uncertainties 
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Stars and Bytes – Nuclear Astrophysics as Seen by an Stellar Modeler  

ChETEC-INFRA SNAQs [Schools on Nuclear Astrophysics Questions],  

February 17, 2021    

 

Thank you for your 

attention!  

Jordi José  jordi.jose@upc.edu  
Dept. Physics, Technical Univ. of Catalonia (UPC) 

                 & Institute for  Space Studies of Catalonia (IEEC), Barcelona 

 

  



Bonus Slides 



1-D Hydrodynamics 

q = artificial viscosity term 
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Cooking devices: 

Stellar codes 

                      Ingredients: Input Physics 

•EOS 

•Opacities 

•Nuclear reactions                    Initial composition 

Cooking conditions: 

•Initial model 

•Initial conditions 

 (Mstar, Tcenter, ...) 

From C. Iliadis’s web page 

Stellar Modeling: The Art of Stellar Cooking 
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12321 Models  
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Interest of multiD models: to improve state-of-the-art, 1-D 

models with large nuclear reaction networks  

a) “123” (or 1 to 3) Models: 1D simulation of accretion and 

early stages of the TNR  mapping onto a 3D domain 

Outermost shell 

Innermost shell 
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  MareNostrum II (BSC, 2006), 94.21 Tflops/s, 10,240 cores 

 

  MareNostrum III  (BSC, Jan. 2013), >1 Petaflop/s, 48,000 cores 

 

  MareNostrum IV  (BSC, Jun. 2017), >11 Petaflop/s, 165,888 cores 

         



Casanova, JJ, García-Berro, Shore & Calder (2011), Nature 
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3D Models of Mixing 

Zmean ~ 0.2 – 0.3 

            + 

Intermittency 
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Kelvin-Helmholtz instabilities 



b) “convection-in-a-box/cube” studies: multiD simulations 

c) “321” (or 3 to 1) Models: prescriptions of 3D turbulent convection  

(vconv(t), mdredge-up(t), ...) are implemented in 1D simulations to  

follow the final stages of a nova (expansion and ejection) 

Outermost shell 

Innermost shell 
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