First Stars - The importance of accurate stellar abundances

Ása Skúladóttir University of Florence / INAF

The Chemical Elements

The origin of the Chemical elements: Where and when

 Galactic Archeology uses kinematics, stellar ages and chemical abundances of old (and young) stars to learn about the evolution of our Milky Way and its stellar populations.

- Galactic Archeology uses kinematics, stellar ages and chemical abundances of old (and young) stars to learn about the evolution of our Milky Way and its stellar populations.
 - Dynamical evolution (bulge, disks, halo)
 - Accretion history (mergers with smaller galaxies)
 - Chemical evolution (infall/outflows, IMF, SFR, migration, first stars)
 - Nucleosynthesis The origin of the chemical elements

The Chemical Elements

• Many degeneracies: Most elements formed in more than one place!

The Milky Way + satellites

- The Milky Way has ≈50 known dwarf galaxy satellites (McConnachie 2012 + updates)
- Various environments to study the chemical enrichment!

• Abundances of stars depend on where and when they were born!

• Abundances of stars depend on where and when they were born!

Abundances of stars depend on where and when they were born!

• Abundances of stars depend on where and when they were born!

Abundances of stars depend on where and when they were born!

SNIa:

Supernovae Type Ia - white dwarf in binary system

Abundances of stars depend on where and when they were born!

Spectroscopic Surveys of Stars

Upcoming (very soon!)

Seatton Copic Surveys of Stars

Each survey has their own website!

Upcoming (very soon!)

Spectroscopic Surveys of Stars

Having many spectra is one thing interpreting them correctly is another!

First Stars

The First Stars

https://rechneronline.de/planets/

- Iifespan-star.php
 The first stars after the Big Bang only made of H and He (and a dash of Li)
- Likely more massive than the stars formed today.
- First stars with $M < 0.8 M_{\odot}$ can survive until today

The First Stars

• First stars with $M < 0.8 M_{\odot}$ can survive until today

First Stars

• If first stars were more massive

- More ionizing radiation.
- Higher fraction of Supernovae (end of massive stars) more production of chemical elements.
- Less likely that there is a surviving first star in the Milky Way -None found yet!

Fig. credit: https://www.universetoday.com/24776/what-were-the-first-stars/

Second Generation!

Second Generation!

Second generation stars guard the products of the First Stars

The most iron-poor star

- ► The most iron-poor star known to date has
 - [Fe/H] <-7.1 when estimated in 1D LTE (Keller et al. 2014).
 - [Fe/H] <-6.5 when estimated with 3D NLTE, ~4 times higher (Nordlander et al. 2017)
- ➤ That is less than 1/3,000,000 solar!

The most iron-poor star

Keller et al. 2014

CEMP stars

CEMP-no star: Carbonenhanced metalpoor star (no Ba, Eu enhancement)

CEMP stars

CEMP stars

CEMP-no star: Carbonenhanced metalpoor star (no Ba, Eu enhancement)

CEMP stars - Faint SN fallback

CEMP stars - Faint SN fallback

- CEMP-no stars are our best observational evidence for the first stars!
 - Their composition tell us about the products of the first stars!
 - ➤ The products of their first stars tell us about their properties, e.g. mass and explosion energy.

The products of the first stars

The products of the first stars

- CEMP-no stars are our best observational evidence for the first stars!
 - Their composition tell us about the products of the first stars!
 - ➤ The products of their first stars tell us about their properties, e.g. mass and explosion energy.
 - The CEMP-no frequency tells us about the earliest chemical enrichment.

Model with different mass distribution of stars compared with observed fraction of CEMP-no stars (de Bennassuti et al. 2017)

- CEMP-no stars are our best observational evidence for the first stars!
 - Their composition tell us about the products of the first stars!
 - ➤ The products of their first stars tell us about their properties, e.g. mass and explosion energy.
 - The CEMP-no frequency tells us about the earliest chemical enrichment.

- CEMP-no stars are our best observational evidence for the first stars!
 - Their composition tell us about the products of the first stars!
 - ► The products of their first stars tell us about their properties, e.g. mass and explosion energy.
 - The CEMP-no frequency tells us about the earliest chemical enrichment.

► However...

[C/Fe] measurements

- Carbon is typically measured from molecular CH lines, which are sensitive to temperature and thus 3D effects. Thus Carbon is typically overestimated.
- ► Fe measured using 1D LTE **underestimates** the Fe compared to 3D NLTE.
- The 1D LTE [C/Fe] is overestimated by as much as 1 dex at the lowest metallicities!

[C/Fe]-measurements

Comparison of 1D LTE CH lines, and 3D NLTE atomic C I lines.

Amarsi et al. 2019, Amarsi, Nissen & Skúladóttir 2019

(CEMP-no stars do exist)

From directly comparing the spectra of similar stars with different C abundances we know the the dispersion is real, but it is still poorly quantified.

Example: A recently discovered CEMP-no star in a dwarf galaxy.

Beyond CEMP-no stars

- ► Not all first stars are expected to explode as faint supernovae.
- If we want to study different kinds of First Stars, e.g. hypernovae, pairinstability supernovae, massive rotating zero-metallicity stars etc. Accurate abundances are still very important.
- ► Carbon is not the only element with high 3D and/or NLTE corrections.
 - Aluminum corrections can be as high as 1 dex (Nordlander et al. 2017).
 - Manganese corrections can be as high as 1 dex (Bergemann et al. 2019).
 - ► etc...

Conclusions

- Chemical abundances of stars are currently the best (and often only) observational evidence of the properties of the first stars.
- The 3D NLTE abundances can differ up to (and maybe beyond) 1 dex from the 1D LTE abundances.
- Accurate chemical abundances are of utmost importance if we want to understand the first stars!
- Still work in progress.