First Stars - The importance of
accurate stellar abundances
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The Chemical Elements

* The origin of the Chemical elements: Where and when




Galactic Archaeology
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Galactic Archeology

e Galactic Archeology uses kinematics, stellar ages and
chemical abundances of old (and young) stars to learn
about the evolution of our Milky Way and its stellar
populations.

The Milky Way ¢
is a “proxy” for !
other galaxies!



Galactic Archeology

e Galactic Archeology uses kinematics, stellar ages and
chemical abundances of old (and young) stars to learn
about the evolution of our Milky Way and its stellar
populations.

e Dynamical evolution (bulge, disks, halo)
e Accretion history (mergers with smaller galaxies)

 Chemical evolution (infall/outflows, IMF, SFR, migration,
first stars)

* Nucleosynthesis - The origin of the chemical elements



The Chemical Elements

e Many degeneracies: Most elements formed in more than one place!




The Milky Way + satellites

* The Milky Way has =50 known dwarf galaxy satellites
(McConnachie 2012 + updates)

* \arious environments to study the chemical enrichment!




Galactic Archeology

 Abundances of stars depend on where and when they were born!

[Mg/Fe]

[Ca/Fe]

[Fe/H]

Tolstoy et al. 2009
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Galactic Archeology

 Abundances of stars depend on where and when they were born!
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Galactic Archeology

 Abundances of stars depend on where and when they were born!
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Galactic Archeology

 Abundances of stars depend on where and when they were born!
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Spectroscopic Surveys of Stars
e Ongoing:

APSGEE
ML\/M “

e Upcoming (very soon!)




"'\COpiC SLI rveys of Stars

' Each survey has :
1 their own :
website!




Spectroscopic Surveys of Stars
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Having many spectra is one thing -
interpreting them correctly is another!
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The First Stars
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e The first stars after the Big Bang only made of H and He
(and a dash of Li)

e Likely more massive than the stars formed today.

e First stars with M < 0.8 M@ can survive until today




The First Stars
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First Stars

o If first stars were more massive
* More ionizing radiation.

e Higher fraction of Supernovae (end of massive stars) - more
production of chemical elements.

* |ess likely that there is a surviving first star in the Milky Way -
None found yet!

Fig. credit: https://www.universetoday.com/24776/what-were-the-first-stars/



Second Generation!




Second Generation!

Second generation stars guard the products of
the First Stars




The most iron-poor star

» The most iron-poor star known to date has

» [Fe/H]<-7.1 when estimated in 1D LTE (Keller et al.
2014).

» [Fe/H]<-6.5 when estimated with 3D NLTE, ~4 times
higher (Nordlander et al. 2017)

» That is less than 1/3,000,000 solar!




The most iron-poor star
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CEMP stars
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CEMP stars
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CEMP stars
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CEMP stars - Faint SN fallback




CEMP stars - Faint SN fallback

" , ' Very high [C/Fe]! |
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CEMP-no stars!

» CEMP-no stars are our best observational evidence for the
first stars!

» Their composition tell us about the products of the first
stars!

» The products of their first stars tell us about their
properties, e.g. mass and explosion energy.




The products of the first stars

Two 25 M models with different explosion energies
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The products of the first stars

Two 25 M models with different explosion energies

C 0 Ne Mg Si S Ar Ca Ti Cr Fe Ni Zn
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CEMP-no stars!

» CEMP-no stars are our best observational evidence for the
first stars!

» Their composition tell us about the products of the first
stars!

» The products of their first stars tell us about their
properties, e.g. mass and explosion energy.

» The CEMP-no frequency tells us about the earliest
chemical enrichment.



CEMP-no stars!

» Model with different mass
distribution of stars
compared with observed
fraction of CEMP-no stars
(de Bennassuti et al. 2017)
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CEMP-no stars!

» CEMP-no stars are our best observational evidence for the
first stars!

» Their composition tell us about the products of the first
stars!

» The products of their first stars tell us about their
properties, e.g. mass and explosion energy.

» The CEMP-no frequency tells us about the earliest
chemical enrichment.




CEMP-no stars!

» CEMP-no stars are our best observational evidence for the
first stars!

» Their composition tell us about the products of the first
stars!

» The products of their first stars tell us about their
properties, e.g. mass and explosion energy.

» The CEMP-no frequency tells us about the earliest
chemical enrichment.

» However...



[C/Fe] measurements

» Carbon is typically measured from molecular CH lines,
which are sensitive to temperature and thus 3D effects.
Thus Carbon is typically overestimated.

» Fe measured using 1D LTE underestimates the Fe
compared to 3D NLTE.

» The 1D LTE [C/Fe] is overestimated by as much as 1 dex at
the lowest metallicities!

Amarsi et al. 2019, Amarsi, Nissen & Skuladottir 2019



[C/Fe]-measurements

» Comparison of 1D LTE CH lines, and 3D NLTE atomic C I

lines.
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(CEMP-no stars do exist)

» From directly comparing the spectra of similar stars with
different C abundances we know the the dispersion is real,
but it is still poorly quantified.
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Beyond CEMP-no stars

» Not all first stars are expected to explode as faint supernovae.

» If we want to study different kinds of First Stars, e.g. hypernovae, pair-
instability supernovae, massive rotating zero-metallicity stars etc.
Accurate abundances are still very important.

» Carbon is not the only element with high 3D and/or NLTE corrections.

» Aluminum corrections can be as high as 1 dex (Nordlander et al.
2017).

» Manganese corrections can be as high as 1 dex (Bergemann et al.
2019).

» etc...



Conclusions

» Chemical abundances of stars are currently the best (and
often only) observational evidence of the properties of the
first stars.

» The 3D NLTE abundances can differ up to (and maybe
beyond) 1 dex from the 1D LTE abundances.

» Accurate chemical abundances are of utmost importance
if we want to understand the first stars!

» Still work in progress.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 804240).



