Compartmental models with user-defined trans-membrane currents through NESTML

Krzysztof Blaszczyk¹, Pooja Babu², Charl Linssen², Abigail Morrison^{1,2,3}, Willem A.M. Wybo³

- ¹ Department of Computer Science 3 Software Engineering, RWTH Aachen University, Aachen, Germany
- ² Simulation & Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Germany
- ³ Institute of Neuroscience and Medicine (INM-6) & Institute for Advanced Simulation (IAS-6) & JARA-Institute Brain Structure-Function Relationship (JBI-1 / INM-10), Research Centre Jülich, Jülich, Germany

Email: w.wybo@fz-juelich.de

Neurons in the brain are characterized by their elaborate dendritic trees and varied distributions of trans-membrane currents [1]. In previous work, we extended NEST with the capability to simulate compartmental models [2]. While the dendritic layout could be defined at runtime, ion channel and synaptic receptor dynamics could not be customized. Here, we address this shortcoming by leveraging NESTML: trans-membrane currents can be written intuitively as equations, which are combined with the previously implemented integrator for compartmental dynamics and compiled.

All trans-membrane currents in a given neuron model are written down in a single NESTML file, either as ion channels or as receptor currents. The compartmental layout is defined at run-time, while optionally specifying the ion channel parameters declared in NESTML. Finally, synaptic receptors are added, again while optionally specifying receptor parameters.

In contrast to other compartmental simulators [3], we have chosen a low-level interface for the compartmental models in NEST, where the parameters of individual compartments are exposed. Thus, users can easily define few-compartment models with abstract dendritic subunits. Additionally, NEAT (Neural Analysis Toolkit) provides a high-level interface to export both detailed and simplified dendritic models [5] to NEST. With these additions, NEST becomes an attractive tool for the simulation of micro-, meso- and massive-scale networks of neurons with dendritic trees.

Acknowledgements

Supported by the Helmholtz Portfolio theme Supercomputing and Modeling for the Human Brain, the Excellence Strategy of the Federal Government and the Länder [G:(DE-82)EXS-PF-JARA-SDS005, G:(DE-82)EXS-SF-neuroIC002] and the European Union's Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreement Nos. 720270, 785907 and 945539 (Human Brain Project SGA1-3).

References

- [1] P. Poirazi and A. Papoutsi, "Illuminating dendritic function with computational models," *Nat. Rev. Neurosci.*, 2020
- [2] W. A. M. Wybo, J. Jordan, M. Petrovici, and W. Senn, "Dendrites in NEST," NEST Conf. Proc., 2020.
- [3] M. L. Hines and N. T. Carnevale, "NEURON: A Tool for Neuroscientists," *Neurosci.*, vol. 7, no. 2, pp. 123–135, 2001.
- [4] W. A. M. Wybo, J. Jordan, B. Ellenberger, U. M. Mengual, T. Nevian, and W. Senn, "Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses," *Elife*, vol. 10, pp. 1–26, 2021.

Copyright 2021 K. Blaszczyk, P. Babu, C. Linssen, A. Morrison and W.A.M. Wybo under Creative Commons Attribution License (CC BY-NC 4.0).