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17:30 NEST Initiative General Assembly: Closed session for all NEST Initiative members and official yearly assembly for 
reports, elections and decisions. 

18:30 Social gathering (open end): Meet all the other conference participants in an informal setting at the GatherTown beach, 
chat, play games and get to know the NEST community members around you. Don't hesitate to bring your favorite drink and 
lunch/dinner/snack adequate for your timezone. This is of course an optional offering and you can also reduce your screen time 
and go for a real walk to regenerate (without the community though). We'll hopefully see each other again tomorrow. 
 

 

 

Monday, 28 June (all times CEST)  

      Morning          Afternoon 
 

 

Session 1 Chair: Hans Ekkehard Plesser 

09:15 Keynote 
Embedding memories in a network 
with excitatory and inhibitory 
plasticity leaves a spiking regularity 
trace 
Julia Gallinaro 

10:00 Short break 

10:15 
 

 

Talk 
NEST Desktop: A web-based GUI for 
the NEST Simulator 
Sebastian Spreizer 

10:35 Talk 
Multi-scale brain co-simulation in the 
Human Brain Project: EBRAINS tools for 
in-transit simulation and analysis 
Muhammad Fahad 

10:55 Talk 
EBRAINS Scientific Liaison Unit 
Claudia Bachmann 

11:15  Short break 

11:30 Workshop 

Structural plasticity 

Sandra Diaz 

12:30 Lunch break 
 

Session 2 Chair: Johanna Senk 
 13:30 Session Introduction 

13:35  Keynote 
Structured Information 
Representation with Assemblies of 
Spiking Neurons 
Michael Günther Müller 

14:20 Short break 

14:30 Flash talk 

Sequence learning, prediction, and 
generation in networks of spiking 
neurons 
Younes Bouhadjar 

14:40 Talk 
Event-driven implementation of 
eligibility propagation 
Agnes Korcsak-Gorzo 

15:00 
 

Flash talk 
Activity simulations in random networks 
subject to neurodegradation 
Sylvain Casteilla 

15:10  Short break 

15:30 Poster session 

16:00 Keynote  

NEST for Associative Memory with 
Winner Take All Nets 

Christian Huyck 

16:45 Group photo 

 

08:45 
09:00              

Registration  
Welcome & Introduction 

 Hans Ekkehard Plesser 
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Tuesday, 29 June (all times CEST)  

      Morning                      Afternoon 

 

* This slot will be filled during the conference and is intended for dedicated in-depth discussions of interesting topics that came 
up in the sessions. Topic suggestions are collected openly at the white board in the Gathertown main room and selected by the 
community towards the end of the conference. 

 

Session 3 Chair: Markus Diesmann 
09:15 Session Introduction 

09:25 Talk 
Towards a systematic 
understanding  
of deep-sleep-like activity effects 
on the network working points 
during learning cycles 
Chiara De Luca 

09:45 Workshop 
Modeling and simulation of 
synaptic plasticity using NESTML 
and NEST Simulator  
Charl Linssen, Pooja Babu 

10:45 Short break 

11:05 Flash talk 
Spiking model of the head 
direction cell system for 
orientation estimation 
Rachael Stentiford 

11:15 Keynote 
Conditions for wave trains in 
spiking neural networks 
Johanna Senk 

12:00 Lunch break 
 

Session 4 Chair: Abigail Morrison 
13:00 Session Introduction 

13:05 Keynote 
Dynamics of multiple interacting 
excitatory and inhibitory 
populations with delays 
Christopher Kim 

13:50 Short break 

14:00 Talk 
Compartmental models with user-
defined trans-membrane currents 
through NESTML 
Willem Wybo 

14:20 Flash talk 
Combining NEST Simulator and Python 
Modules in Parallel HPC 
Implementation 
Petia Koprinkova-Hristova 

14:30 Flash talk 
Sub realtime simulation of a full density 
microcircuit model on a single compute 
node 
Anno Kurth 

14:40 Short break 

15:00 Poster session 

15:30                 Wrap-up 
 Abigail Morrison 

15:45  Community Discussions* 

17:00  End of Day 2 
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Embedding memories in a network with excitatory and 
inhibitory plasticity leaves a spiking regularity trace 

 
Júlia V. Gallinaro1, Claudia Clopath1 

1 Bioengineering Department, Imperial College London, London, United Kingdom 

Email: j.gallinaro@imperial.ac.uk 

 
Cortical synapses are plastic, allowing sensory experience to be stored in the network 
connectivity. Theoretical studies have shown that neuronal assemblies can form upon 
stimulation in networks with multiple forms of plasticity [1, 2, 3, 4]. In some of these studies 
[3,4], the resulting network activity reflects previous experiences, with assemblies 
transitioning between periods of high and low activity. In the others [1, 2], inhibitory 
plasticity counteracts the effect of excitatory potentiation, leading to the formation of cell 
assemblies in which excitatory neurons receive increased excitatory and inhibitory currents 
(EI assemblies). Such EI assemblies could implement inhibitory engrams [5], which allow 
memories to be stored in a quiescent state, from where they can be recalled for example 
through disinhibition [6]. Here we show that, also in EI assemblies, the previous experience 
may be reflected on spontaneous activity, and information about the assembly may be 
encoded on the regularity of spike trains. We perform simulations of recurrent networks of 
excitatory and inhibitory leaky integrate-and-fire neurons, in which excitatory-to-excitatory 
connections follow the triplets STDP rule [7], and inhibitory-to-excitatory connections are 
subject to iSTDP [1]. We show that, after stimulation, excitatory neurons belonging to the EI 
assembly can be distinguished from the other excitatory neurons in the network based on the 
coefficient of variation of their inter-spike-intervals. We also show how information about 
irregularity of spike trains can be readout with the support of short-term plasticity, and how 
this irregularity leads to a slower decay of excitatory weights within the EI assembly. 

 
References 
1. T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner (2011), Inhibitory plasticity 

balances excitation and inhibition in sensory pathways and memory networks, Science, vol. 334, 
no. 6062, pp. 1569–1573 

2. G. K. Ocker and B. Doiron (2019), Training and spontaneous reinforcement of neuronal 
assemblies by spike timing plasticity, Cerebral Cortex, vol. 29, no. 3, pp. 937–951. 

3. A. Litwin-Kumar and B. Doiron (2014), Formation and maintenance of neuronal assemblies 
through synaptic plasticity, Nature communications, vol. 5, no. 1, pp. 1–12 

4. F. Zenke, E. J. Agnes, and W. Gerstner (2015), Diverse synaptic plasticity mechanisms orchestrated 
to form and retrieve memories in spiking neural networks Nature communications, vol. 6, no. 1, pp. 
1–13 

5. H. C. Barron, T. P. Vogels, T. E. Behrens, and M. Ramaswami (2016), Inhibitory engrams in 
perception and memory  Proceedings of the National Academy of Sciences, vol. 114, no. 26, pp. 
6666–6674 

6. H. Barron, T. Vogels, U. Emir, T. Makin, J. O’shea, S. Clare, S. Jbabdi, R. J. Dolan, and T. Behrens 
(2016), Unmasking latent inhibitory connections in human cortex to reveal dormant cortical 
memories Neuron, vol. 90, no. 1, pp. 191- 203 

7. J.-P. Pfister and W. Gerstner (2006), Triplets of spikes in a model of spike timing-dependent 
plasticity Journal of   Neuroscience, vol. 26, no. 38, pp. 9673–9682 

 

Copyright 2021 Gallinaro, Clopath under Creative Commons Attribution License (CC BY-NC 4.0). 
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NEST Desktop: A web-based GUI for the NEST Simulator 

Sebastian Spreizer1,2,3, Jens Buchertseifer1, Johanna Senk2, Stefan Rotter3, Markus 
Diesmann2,4,5, Benjamin Weyers1 
1 Department IV - Computer Science, Human-Computer Interaction, University of Trier, Trier, Germany 
2 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-

Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany 
3 Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany 
4 Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen 

University, Aachen, Germany 
5 Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany 

Email: spreizer@uni-trier.de 

NEST Desktop [1] comprises graphical elements for creating and configuring network 
models, running simulations, visualizing and analyzing the results. It allows students to 
explore important concepts in computational neuroscience without the need to learn a 
simulator control language before. In this contribution we demonstrate how NEST Desktop 
gives neuroscientists access to the features of NEST 3 and the European EBRAINS 
infrastructure [2]. 

 
Earlier versions of NEST Desktop required a NEST installation on the user’s machine which 
limited not only the uptake by a non-expert audience but also the network models studied to 
what can be simulated on a laptop or desktop computer. To ease the use of the app and 
increase the range of possible simulations, we have separated the GUI from the simulation 
kernel: the web browser renders the GUI while the simulation kernel runs on a centrally 
maintained server. Furthermore, we discuss the potential of using an in-situ pipeline to enable 
the app to receive larger data sets from an ongoing NEST simulation. This enhances the 
interactivity of NEST for large simulations on HPC facilities. 

 
In order to give students, teachers, and researchers installation-free access to the compute 
resources being built up by the European Union, we integrated NEST Desktop into the 
EBRAINS infrastructure also facilitating long-term sustainability. The same code remains 
available as a stand- alone version of NEST Desktop [3] for applications in teaching and 
training and installations at other sites. 

 
Acknowledgements 
This project has received funding from the European Union’s Horizon 2020 Framework 
Programme for Research and Innovation under Specific Grant Agreement No. 785907 
(Human Brain Project SGA2) and 945539 (Human Brain Project SGA3) and the Helmholtz 
Association Initiative and Networking Fund under project number SO-092 (Advanced 
Computing Architectures, ACA). 

 
References 
1. Documentation [https://nest-desktop.readthedocs.io] 
2. EBRAINS [https://ebrains.eu/service/nest-desktop] 
3. Source code [https://github.com/nest-desktop/nest-desktop] 

 
Copyright 2021 Spreizer, Buchertseifer, Senk, Rotter, Diesmann, Weyers under Creative Commons Attribution 
License (CC BY-NC 4.0). 

mailto:spreizer@uni-trier.de
https://nest-desktop.readthedocs.io/
https://ebrains.eu/service/nest-desktop
https://github.com/nest-desktop/nest-desktop
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Multi-scale brain co-simulation in the Human Brain Project: 
EBRAINS tools for in-transit simulation and analysis 

Muhamad Fahad1, Kim Sontheimer1, Cristian Jimenez-Romero1, Rolando Ingles 
Chavez1, Sandra Diaz  1, Wouter Klijn1

, Abigail Morrison1,2,3 
1Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), 
Simulation & Data Lab Neuroscience, JARA, 52425 Jülich | Germany 
2Forschungszentrum Jülich, GmbH, Institute of Neuroscience and Medicine (INM-6) and Institute for 
Advanced Simulation (IAS-6), 52425 Jülich | Germany 
3Software Engineering, Department of Computer Science 3, RWTH Aachen University, Ahornstraße 55, 52074 
Aachen | Germany 

Email: m.fahad@fz-juelich.de 
 

An important capability build by The Human Brain Project (HBP) is brain simulations of 
large- and multiscale experimental and clinical data sets with integrated analysis toolkits. 
This results in workflows with multiple components to be run in parallel and in coordination 
with each. How to develop an end-user friendly production system capable of running these 
workflows is an open question, and introduces several scientific, engineering, and execution 
challenges: Parallel execution in a distributed environment. Data-flow and transformation 
between different scales, as well as error propagation related to the model complexity. 
Tolerance to network isolation/failure, the identification of communication/computation 
bottlenecks, and the growing probability of the fault condition as a multiplicative function of 
the number of applications in a workflow and their individual failure probabilities. 
To address these challenges, the multi-scale co-simulation framework, based on the Modular 
Science approach [1], connects at runtime the needed simulation engines, analysis tools and 
visualization engines. The Modular Science runtime execution system augments the science 
functionality with engineering and deployment functionality providing a handle on the 
complexity of the system. 
This talk will introduce the multi-scale co-simulation framework and the Modular Science 
approach to address the challenges with a focus on two-driving use-cases containing a NEST 
model. Firstly, a TVB[2] and NEST co-simulation with dedicated transformation modules 
connecting a spiking network with a neural mass model. The second use-case is a co-
simulation setup connecting NEST to the multi-agent simulation environment NetLogo[3], 
where a small point neuron network simulation controls agents interacting in a simple world. 

 

Acknowledgements 
This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 785907 (HBP SGA2), from the European 
Union’s Horizon 2020 Framework Programme for Research and Innovation under the 
Specific Grant Agreement No. 945539 (HBP SGA3) and from the European Union’s Horizon 
2020 Framework Programme for Research and Innovation under the Specific Grant 
Agreement No. 945539 (Human Brain Project SGA3) 
 

References 
1. W. Klijn, et. al (2019), Staged deployment of interactive multi-application HPC workflows, HPCS 
2. P. Sanz Leon, et. al (2013), The Virtual Brain: a simulator of primate brain network dynamics Frontiers in 

Neuroinf. Volume 7,  
3. Wilensky, U. (1999). NetLogo Home Page http://ccl.northwestern.edu/netlogo/. 

 

Copyright 2021 Muhamad Fahad, Kim Sontheimer, Cristian Jimenez-Romero, Rolando Ingles Chavez, 
Sandra Diaz, Wouter Klijn, Abigail Morrison under Creative Commons Attribution License (CC BY-NC 4.0). 

mailto:m.fahad@fz-juelich.de
http://ccl.northwestern.edu/netlogo/


NEST Conference 2021 28–29 June 2021 

8 
 

EBRAINS Scientific Liaison Unit 
 
Claudia Bachmann1, Wouter Klijn1 
1 Jülich Supercomputer Centre (JSC), Institute for Advance Simulation (IAS), Jülich Research Centre, Jülich, 
Germany 

 
Email: c.bachmann@fz-juelich.de 

 
The Human Brain Project (HBP) is developing and providing a European Brain Research 
Infrastructure (EBRAINS), which offers NEST as a service component. EBRAINS provides 
digital tools and services for brain research, aiming for a concerted usage of the different 
tools. This allows researchers to simulate, visualize, analyze, and compare brain activity at 
different spatial and temporal scales (e.g. TVB-NEST multiscale simulation tool). EBRAINS 
comprises more than 130 European research organizations, each with a large number of 
scientists, programmers and technical coordinators. On top of this, it also entails divisions 
responsible for management, outreach, communication, education, ethics and, of course, the 
director’s board. The Scientific Liaison Unit (SLU) was founded in order to reconcile the 
different needs and viewpoints resulting from the complexity of developing and operating 
this immense EBRAINS infrastructure. 
In my talk, I will give an overview of the different areas of responsibility that the SLU has. 
In particular, I will explain our strategies for identifying and prioritizing the needs of the 
scientific community and their formulation into technical requirements based on scientific 
showcases [1]. In this context, I will also demonstrate how we present the content of the 
showcases in a very systematic and standardized way, which helps researchers to structure 
their work and to identify potential challenges as well as opportunities for extension and 
interaction early on. 

 
Acknowledgements 
This research was supported by the EBRAINS research infrastructure, funded from the 
European Union’s Horizon 2020 Framework Program for Research and Innovation under the 
Specific Grant Agreement No. 945539 (Human Brain Project SGA3). 

 
References 
1. https://drive.ebrains.eu/f/2d30a9a6284f4cc0b8c9/ 

 
 
 
 
 
 
 
 
 
 
 
Copyright 2021 Claudia Bachmann, Wouter Klijn under Creative Commons Attribution License (CC BY-NC 
4.0). 

mailto:c.bachmann@fz-juelich.de
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Workshop: Structural plasticity  
 

Sandra Diaz  1 

1Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), 
Simulation & Data Lab Neuroscience, JARA, 52425 Jülich | Germany 

Email: s.diaz@fz-juelich.de 

In this session we will cover the state of the art research and future directions of simulation and 
modeling of structural plasticity and generative connectomics. We will examine modeling and 
simulation of connectivity generation from two perspectives:  
1. Neural development and structural plasticity in biological neural  networks 
2. Generation of connectivity for biological and artificial neural networks  

In specific we will discuss about different models of structural plasticity, the current available 
implementation in NEST and other simulation / emulation platforms as well as the intersections 
among them. We will also cover implementation details such as: identification of data and 
computing requirements, separation between simulation of activity and structural dynamics, 
management of computing resources, and implementation of interfaces. Discussion will also 
focus on how to collectively move forward in this field in order to provide more flexibility to 
modelers and researchers while preserving computational efficiency and a standard language 
which allows sharing and comparing among platforms.  
Potential participants to this session would be modelers, computational and experimental 
neuroscientists, developers, experts in simulation interfaces, and experts in interactive data 
analysis and visualization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2021 Sandra Diaz under Creative Commons Attribution License (CC BY-NC 4.0). 
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Structured Information Representation with Assemblies of 
Spiking Neurons 

Michael G. Müller1, Christos H. Papadimitriou2, Wolfgang Maass1, Robert Legenstein1 
1 Institute of Theoretical Computer Science, Graz University of Technology, Graz 8010, Austria 
2 Computer Science Department, Columbia University, New York, NY 10027  

Email: mueller@igi.tugraz.at 

High-level cognition requires structured representations of information in which abstract 
categories are linked to content. Experimental data point to specific subareas of the temporal 
lobe from which categorical information (like agent or patient in a sentence) can be decoded 
[1]. We present assembly projections [2], a general mechanism for attaching structural 
information to content based on assemblies of spiking neurons. We assume that content is 
encoded by sparse assemblies (similar to the concept cells [3] found in the medial temporal 
lobe, Fig. A). When activated by input (Fig. B), content can be attached to semantic variables 
through the formation of a linked assembly in a separate population (Fig. C-D). This link 
allows structural information to be read out at a later time, leading to the reactivation of the 
content assembly. Assembly projections emerge through STDP in randomly wired spiking 
neural networks with divisive inhibition where the different populations are controlled by 
disinhibition. This models thus provides a very general mechanism for binding (i.e., tying 
together pieces of information) without relying on assumptions made by many classical 
models of binding like specific connectivity or special circuitry. As assembly projections also 
support a number of elementary symbolic computations (e.g., comparing contents linked to 
different structural categories), they can serve as a building block for models capable of 
solving more demanding cognitive tasks. 

 
Acknowledgements 
This work was supported by the Austrian Science Fund (FWF) projects I 3251-N33 
(SASNN) and I 4670-N (SMALL) and by the European Union projects 785907 (HBP) and 
824162 (SYNCH). 
References 
1. Frankland SM and Greene JD (2015) An architecture for encoding sentence meaning in left 

mid-superior temporal cortex. Proc Natl Acad Sci USA, 112(37), 11732-11737. doi: 
10.1073/pnas.1421236112 

2. Müller MG, Papadimitriou CH, Maass W, and Legenstein R (2020). A model for structured 
information representation in neural networks of the brain. eNeuro, 7(3). doi: 
10.1523/ENEURO.0533-19.2020 

3. Quian Quiroga R (2016) Neuronal codes for visual perception and memory. Neuropsychologia, 83 
(2016): 227-241. doi: 10.1016/j.neuropsychologia.2015.12.016 
 

Copyright 2021 Müller, Papadimitriou, Maass, Legenstein under Creative Commons Attribution License (CC 
BY-NC 4.0). 

mailto:mueller@igi.tugraz.at
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Sequence learning, prediction, and generation in networks 
of spiking neurons 

 
Younes Bouhadjar1,2,, Markus Diesmann1,3, Dirk J. Wouters 4, and Tom Tetzlaff 1 
1 Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA 

BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany 
2 Peter Grünberg Institute (PGI-7-10), Jülich Research Centre and JARA, Jülich, Germany 
3 Department of Physics, Faculty 1, & Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical 

School, RWTH Aachen University, Aachen, Germany 
4 Institute of Electronic Materials (IWE 2) & JARA-FIT, RWTH Aachen University, Aachen, Germany 

Email: y.bouhadjar@fz-juelich.de 

Sequence learning, prediction and generation has been proposed to be the universal 
computation performed by the neocortex. The Hierarchical Temporal Memory (HTM) 
algorithm [1] realizes this form of computation. It learns sequences in an unsupervised and 
continuous manner using local learning rules, permits a context-specific prediction of future 
sequence elements, and generates mismatch signals in case the predictions are not met. While 
the HTM algorithm accounts for a number of biological features such as topographic 
receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on 
abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that 
can only partly be related to known biological mechanisms. Here, we devise a continuous-
time implementation of the temporal-memory (TM) component of the HTM algorithm [2], 
implemented in NEST, which is based on a recurrent network of spiking neurons with 
biophysically interpretable variables and parameters. The model learns non-Markovian 
sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented 
with a rate-based homeostatic control. In combination with nonlinear dendritic input 
integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-
organization of narrow sequence-specific feedforward subnetworks. These subnetworks 
provide the substrate for a faithful propagation of sparse, syn- chronous activity, and, thereby, 
for a robust, context-specific prediction of future sequence elements as well as for the 
autonomous replay of previously learned sequences. By strengthening the link to biology, 
our implementation facilitates the evaluation of the TM hypothesis based on experimentally 
accessible quantities. The continuous-time implementation of the TM algorithm permits, in 
particular, an investigation of the role of sequence timing for sequence learning, prediction 
and replay. We demonstrate this aspect by studying the effect of the sequence speed on the 
sequence learning performance and on the speed of autonomous sequence replay. 

 

Acknowledgements 
This project was funded by the Helmholtz Association Initiative and Networking Fund 
(project number SO-092, Advanced Computing Architectures), and the European Union’s 
Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant 
Agreement No. 945539 (Human Brain Project SGA3) and No. 785907 (Human Brain Project 
SGA2). 

 
References 
1. Hawkins, J., Ahmad, S., & Dubinsky, D. (2011). Cortical learning algorithm and hierarchical temporal 

memory. Numenta Whitepaper , 1–68. 
 

Copyright 2021 Bouhadjar, Diesmann, Wouters, Tetzlaff under Creative Commons Attribution License (CC 
BY-NC 4.0). 
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Event-driven implementation of eligibility propagation 
Agnes Korcsak-Gorzo1,2, Jonas Stapmanns1,2, Sacha van Albada1,3, David Dahmen1, Markus 
Diesmann1,4 
1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-

Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany 
2 Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany 
3 Institute of Zoology University of Cologne, Cologne, Germany 
4 Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, 

Aachen, Germany 

Email: a.korcsak-gorzo@fz-juelich.de 
 
We port eligibility propagation (eprop) [1], a biologically plausible approximation of 
backpropagation through time for recurrent spiking neural networks, to NEST. Eprop is local 
in space and time and employs broadcast alignment, i.e., random feedback weights from 
output neurons to the recurrent network. In contrast to the original fully time-driven 
implementation in Tensorflow, we show here an implementation that is consistent with the 
event-driven update of synapses in NEST. Three factors enter this learning rule: the filtered 
presynaptic spike-trains, the postsynaptic membrane potential, and instructive learning 
signals emitted by the output neurons. To accumulate the factors until the weight update, we 
use the NEST archiving infrastructure [2]. As a proof of concept, we demonstrate efficient 
learning of a regression and a classification task in fully connected networks of a few hundred 
neurons. We currently study the learning behavior in sparsely connected, Brunel-type [3] 
networks and larger, more structured networks, like a cortical microcircuit [4]. 

 

Acknowledgements 
The authors gratefully acknowledge the computing time granted through JARA on the 
supercomputer JURECA [5] at Forschungszentrum Jülich, funding from the European 
Union’s   Horizon 2020 Framework Programme for Research and Innovation under grant 
agreement number 945539 (Human Brain Project SGA3) and funding from the Helmholtz 
Association Initiative and Networking Fund under project number SO-092 (Advanced 
Computing Architectures). We thank Jakob Jordan and Alexander van Meegen for an early 
implementation and Franz Scherr for helpful discussions. 

 

References 
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2. Stapmanns et al. (2020). arXiv preprint arXiv:2009.08667. https://arxiv.org/abs/2009.08667 
3. Brunel (2000). Journal of computational neuroscience, 8(3), 183-208. 

https://doi.org/10.1023/A:1008925309027 
4. Potjans & Diesmann (2014). Cerebral cortex, 24(3), 785-806. https://doi.org/10.1093/cercor/bhs358 
5. Jülich Supercomputing Centre. (2018). JURECA: Modular supercomputer at Jülich Supercomputing 

Centre. Journal of large-scale research facilities, 4, A132. https://doi.org/10.17815/jlsrf-4-121-1 
 

Copyright 2021 Korcsak-Gorzo and Stapmanns et al. under Creative Commons Attribution License (CC BY-
NC 4.0). 
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Activity simulations in random networks subject to 
neurodegradation 

Sylvain Casteilla1, Samuel Bottani1 
1 Laboratoire Matières et Systèmes Complexes UMR CNRS 7057, Université de Paris 

Email: samuel.bottani@u-paris.fr 

In Neuroscience, in vitro cultures of neurons play a particular role; they provide systems 
where neurons can be reproducibly stimulated, with controlled parameters. These setups 
make it possible, by reducing the complexity of the system, to investigate the properties of a 
neuronal network and how computation may occur in these structures. In our case, we study 
the activity of a neuronal network in culture under the attack of a neurodegenerative process 
which progressively destroys links or nodes. 
 
Theoretical deductions from experiments and simulations show complex spiking avalanches 
and large scale activity bursts [1]. Additionally, the activity of the network can exhibit phase 
transitions from an asynchronous state to one displaying synchronous bursting, which is 
connected to the topological features of the network. 
We simulate using NEST the evolution of the activity in random networks of adaptative 
integrate and fire neurons while the network is progressively degraded. We considered two 
different strategies to perform the simulations over attacked networks. 
In the first approach, a new simulation is restarted for each network modification. In the 
second strategy, the NEST disconnect function is used to modify the network while the 
simulation of activity is running. Additionally, modifications of the network are made with 
different strategies as: a uniform random removal of the neurons, a selective targeted removal 
depending on their out- or in-degree, or a specific targeting of nodes identified among 
initiators of synchronous bursting states. 
We monitor different properties for the same topological neuronal network modified with 
these two approaches, and observe that the post transitory state of the network dynamics is 
only topology-dependent. 

 
Acknowledgements 
We would like to thank Tanguy Fardet, and Stephane Metens for their helpful discussions. 

 
References 
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Using NEST [1] and PyNN [2], an extensible mechanism for representing continuously valued 
concepts in a network of spiking neurons was developed.  This implemented a continuously 
valued cell assembly, which had persistent firing to represent short term memory.  This 
mechanism was embedded in an associative memory [3] associating discrete beverage (coffee 
and coke) and temperature (hot, cold and warm) concepts with continuously valued 
temperatures.  Two inputs (e.g. hot and coffee) retrieved the associated concept (e.g. 82⁰-87⁰).  
Continuously valued concepts were represented by Winner Take All Networks.  In this case, 
two dimensional bump attractors with local connectivity were used, but the mechanism should 
translate to higher dimensional attractors.  The associative memory context led to an issue of a 
wide range of values being activated, leading to problems with attractor dynamics and multiple 
streams of values firing instead of a single stream.  An exploration of the attractor dynamics of 
the system supported the development of a mechanism to resolve the problem; extra topology 
was added to resolve this problem via merging streams then overcoming the streams repelling 
each other.  A compensatory Hebbian learning rule is also applied to learn the associations.  
This led to results that converge in psychologically realistic time; the system is thus a simple 
neurocognitive model.  Standard NEST synapse and neuron models are used; Hebbian learning 
is done between epochs using python, though it can be done as a user defined NEST synapse 
model, or indeed, as the system uses PyNN, in SpiNNaker. The system can readily be integrated 
with the NEAL component architecture to develop more sophisticated agents. 
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The brain exhibits capabilities of fast incremental learning from a few noisy examples, as well as the 
ability to associate similar memories in autonomously-created categories, and to combine contextual 
hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key 
components of many high-level cognitive functions. Sleep is known to be essential for awake 
performance, but the mechanisms underlying its cognitive functions are still to be clarified: here we 
aim to investigate the effect of deep-sleep-like activity over internal memory representation and its 
energetic and entropic effects. 
At last year NEST 2020 Conference, we demonstrated how to exploit the combination of context and 
perception in a new thalamo-cortical model (ThaCo) based on a soft winner-take-all circuit of 
excitatory and inhibitory spiking neurons [1][2]: this model is capable of undergoing multiple wake-
sleep cycles during incremental learning, it adapts its pre-sleep, deep-sleep and post- sleep firing rates 
in a manner that is similar to the experimental measures of [3], and it demonstrates the beneficial 
cognitive role played by such adaptations.   During the last year, we investigated the effect of a deep-
sleep like activity on the network working point exploring the transition from awake classification 
phases towards deep-sleep like phases, and vice versa. We show that during sleeping, the total input 
current to the cortical neurons decreases due to the sleep-induced homeostatic effect. Sleep-like 
activity, on the other hand, affects the network status during the following awake classification phase: 
the effect of STDP during sleep is a general reduction and homogenization of input current 
distribution. We also show an association effect between the internal representation of similar 
memories. Finally, aiming at a more systematic description of the effects of deep-sleep-like activity, 
some of us defined a simplified rate-based thalamo-cortical model relying on minimal assumptions. 
In this model, sleep formally implements a “density based clustering” in the thalamo-cortical 
connections. Also, a set of entropic and energetic measures are introduced to quantify the effects of 
sleep. These measures are applicable to experimental data. These results are also reproducible in a 
more biological spiking network model. 
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Spike-timing dependent plasticity (STDP) is a ubiquitous and diverse phenomenon in neural networks. 
We will review some of the empirical observations on STDP before looking at two mathematical 
formalisations in more detail, namely STDP with all-to-all and nearest-neighbour spike pairing, and the 
triplet STDP rule from [1]. These mathematical models are then expressed in the NESTML modelling 
language [2], and instantiated in a simple network which is simulated in NEST. We analyse how the 
parameters of the plasticity rule influence the evolution of synaptic strength during simulation. 

All of the model definition, simulation and subsequent analysis will be controlled from a Jupyter 
(Python) notebook. Code will be provided for all models, and we invite interactive experimentation 
during and after the tutorial. Next to running NESTML on a local computer, participants will also have 
the opportunity to log into virtual machines courtesy of HBP/EBRAINS. These can be accessed 
worldwide in the browser, without any prior set-up or installation required. 
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In mammals, navigation and spatial learning rely on building an internal representation of 
the environment using both idiothetic (self-motion) cues and allothetic (external) cues, such 
as vestibular [1] and visual landmark [2] information. Heading is represented by Head 
Direction cells which are active when the animals head faces a preferred direction. 
Visual landmarks have been shown to control the head direction signal in cue rotation studies 
[2], with longer experience of cues resulting in stronger rotations indicating confidence in a 
cues association with a heading is important for overriding the idiothetic estimation, which 
is liable to become less accurate overtime. 
Head direction has been previously modelled as a ring attractor with gaussian connectivity 
between HD cells [3], and as an excitatory population connected to two inhibitory 
populations that drive activity around the ring (representing the reciprocal connections 
between two brain regions know to generate the head direction signal) [4]. 
We propose a spike-based ring attractor model, build using the NEST simulator, composed 
of an excitatory population and inhibitory population, with two additional rings providing 
angular velocity (idiothetic) input, and additional cells for associating landmark information 
with HD cells to correct for drift in the estimation. 
The aim of this work is to understand how uncertainty in the animals heading is represented 
in the brain and explore how allothetic cues can be used to correct drift in a model of the 
head direction system primarily driven by idiothetic cues. 
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Spatiotemporal patterns such as traveling waves are frequently observed in recordings of 
neural activity. Previous studies have investigated the existence and uniqueness of different 
types of waves or bumps of activity using neural-field models [1], phenomenological 
coarse-grained descriptions of neural-network dynamics. But it remains unclear how these 
insights can be transferred to more biologically realistic networks of spiking neurons, where 
individual neurons fire irregularly. 
Here, we employ mean-field theory [2] to reduce a microscopic model of leaky integrate-
and-fire (LIF) neurons with distance-dependent connectivity to an effective neural-field 
model [3,4]. The dynamics in this neural-field model depends on the mean and the variance 
in the synaptic input, both determining the amplitude and the temporal structure of the 
resulting effective coupling kernel. For the neural-field model we employ linear stability 
analysis to derive conditions for the existence of spatial and temporal oscillations and wave 
trains, that is, temporally and spatially periodic traveling waves. Compatible with the 
architecture of cortical neural networks, wave trains emerge in two-population networks of 
excitatory and inhibitory neurons as a combination of delay-induced temporal oscillations 
and spatial oscillations due to distance-dependent connectivity profiles. We demonstrate 
quantitative agreement between predictions of the analytically tractable neural-field model, 
implemented in the toolbox LIF Meanfield Tools [5], and direct NEST simulations of both: 
networks of nonlinear rate-based units and networks of LIF neurons. 
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A network consisting of excitatory and inhibitory (EI) neurons is a canonical model for 
understanding local cortical network activity. In this study, we extended the local circuit 
model and investigated how its dynamical landscape can be enriched when it interacts with 
another excitatory (E) population with long transmission delays. Through analysis of a rate 
model and numerical simulations of a corresponding network of spiking neurons, we studied 
the transition from stationary to oscillatory states by analyzing the Hopf bifurcation structure 
in terms of two network parameters: (1) transmission delay between the EI subnetwork and 
the E population and (2) inhibitory couplings that induced oscillatory activity in the EI 
subnetwork. We found that the critical coupling strength can strongly modulate as a function 
of transmission delay, and consequently the stationary state can be interwoven intricately 
with the oscillatory state. Such a dynamical landscape gave rise to an isolated stationary state 
surrounded by multiple oscillatory states that generated different frequency modes, and cross-
frequency coupling developed naturally at the bifurcation points. We identified the network 
motifs with short- and long- range inhibitory connections that underlie the emergence of 
oscillatory states with multiple frequencies. Thus, we provided a mechanistic explanation of 
how the transmission delay to and from the additional E population altered the dynamical 
landscape. In summary, our results demonstrated the potential role of long-range connections 
in shaping the network activity of local cortical circuits. 
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Neurons in the brain are characterized by their elaborate dendritic trees and varied 
distributions of trans-membrane currents [1]. In previous work, we extended NEST with the 
capability to simulate compartmental models [2]. While the dendritic layout could be defined 
at runtime, ion channel and synaptic receptor dynamics could not be customized. Here, we 
address this shortcoming by leveraging NESTML: trans-membrane currents can be written 
intuitively as equations, which are combined with the previously implemented integrator for 
compartmental dynamics and compiled. 

All trans-membrane currents in a given neuron model are written down in a single NESTML 
file, either as ion channels or as receptor currents. The compartmental layout is defined at 
run-time, while optionally specifying the ion channel parameters declared in NESTML. 
Finally, synaptic receptors are added, again while optionally specifying receptor parameters. 

In contrast to other compartmental simulators [3], we have chosen a low-level interface for 
the compartmental models in NEST, where the parameters of individual compartments are 
exposed. Thus, users can easily define few-compartment models with abstract dendritic 
subunits. Additionally, NEAT (Neural Analysis Toolkit) provides a high-level interface to 
export both detailed and simplified dendritic models [5] to NEST. With these additions, 
NEST becomes an attractive tool for the simulation of micro-, meso- and massive-scale 
networks of neurons with dendritic trees. 
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During our work on implementation of a hierarchical spike timing model of dynamic visual 
information processing and decision making via reinforcement learning [1] we have 
encountered a problem to conduct complete simulation combining an open source Python 
module [2] of retinal ganglion cells with NEST module for the rest of modelled brain 
structures. It appeared that the bottleneck in overall simulation was the retinal ganglion cell 
layer that took much more computational time than the rest of the model so we have 
implemented it in parallel simulation using mpi4py [3] that shortened computational time 
more than 17 times even on a 8 cores desktop computer. However, joint simulation of both 
Python and NEST modules still remained a challenging task. That is why in our recent work 
[4] we have implemented a joint parallel simulation of both modules via spawning the Python 
module and consecutive running the NEST module. We have tested our parallel 
implementation of a piece of our model from [1] consisting of a layer of retinal ganglion cells 
in Python and a layer of LGN cells in NEST version 2.18 [5] on the HPC facility of our 
institute - the supercomputer Avitohol. Simulations of the developed module on different 
number of nodes and varying number of parallel processes were investigated and compared 
with respect to their time consumption. 
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The cortical microcircuit is a building block of the mammalian brain. In a model of the 
network below a 1 mm2 patch of cortical surface [1] the spatial structure is replaced by cell-
type specific random connectivity. Each layer is represented by an excitatory and an 
inhibitory population of integrate-and- fire model neurons. The network model is a 
benchmark for neuromorphic systems [2, 3, 4]. 
This contribution shows performance data for the microcircuit model on two AMD EPYC 
Rome 128 core compute nodes coupled by a direct Infiniband interconnect and running 
NEST 2.14 [5] (with fix 726f9b04bbd47c). On a single node we observe sub realtime 
performance, on two the simulation is 1.7 times faster than realtime. Our study of the aged 
4g kernel serves as a reference for present optimizations, exposes bottlenecks, and guides the 
design of future computing systems. 
For the single node the energy per synaptic event is 0.26 μJ, and for the fastest configuration 
using two nodes 0.39 μJ. These values are in the same order of magnitude as the lowest 
reported so far. The findings confirm a non-trivial relationship [2] between the resources in 
use and the energy required. 
At the poster we demonstrate how power measurements with a contemporary PDU can be 
aligned with benchmark timers to obtain a reliable time course of power consumption. 
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