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model state change using 
machine learning
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Can we understand a system if 
we can predict its behavior?

Understand the cellular underpinning of health & disease

single-cell genomics



disease state & 
treatment

Vision – learn optimal perturbations
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Unbiased description of cellular state

Angerer et al,  
Curr Op Sys Bio 2017

single-cell genomicsbulk genomics

adapted from Shalek & Regev & G Zheng (10X Genomics)

single-cell genomics 
is becoming big data

oilsingle cellsgel beads



Single cell analysis for understanding cell fate in health & disease

Rajewsky, Almouzni, Gorski et al, Nature 2020
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Example: learning cellular decisions in gut formation

Böttcher et al, Nat Cell Bio 2021 (w Lickert lab)



intestinal  
stem cells

Böttcher et al, Nat Cell Bio 2021 
Aliluev et al, Nat Metabo 2021 

Application: intestinal lineage formation in diabetes
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scRNA-seq

less stem cells in high-fat diet

control
high-fat diet

   

Observation: Diseases such as diabetes alters stem cell decision making 
Treatment aim: Manipulate this by adequate drugs



Software matters: computational tools in single cell genomics

trend: increasing machine learning questions asked to single cell data

Zappia & T, „Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape“, Genome Biology 2021

Luke Zappia

www.scrna-tools.org
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Single-cell organ atlases as basis for understanding health

UMI counts and cell-type frequencies (see Methods for details).
We observed an increase in transcriptional noise with aging in
most cell types (Fig. 2a). To further exclude technical confound-
ing we additionally averaged the transcriptional noise scores
per mouse and obtained highly concordant results (Fig. 2b). To
further substantiate this finding we quantified transcriptional
noise in an alternative manner using Spearman's correlations
between cells. This analysis confirmed our finding that transcrip-
tional noise is increased with aging (Fig. 2c, d) and is in line
with previous reports in the human pancreas22 or mouse CD4+
T cells21.

Multi-omics data integration of mRNA and protein. To vali-
date the completeness of our single-cell RNA-sequencing
(scRNA-seq) data and capture age-dependent alterations in both
mRNA and protein content for the whole lung, we generated two
additional cohorts of young and old mice (Fig. 3a, Supplementary
Figure 4 and Supplementary Data 2): (1) bulk RNA-seq data of
three replicates of young (3 months) and old mice (22 months)
and (2) state-of-the-art shotgun proteomics data of four replicates
of young (3 months) and old mice (24 months). To compare the
whole lung bulk transcriptome with single-cell data we generated
in silico bulk samples from the scRNA-seq data by summing
expression counts from all cells for each mouse individually
(Supplementary Data 2). Differential gene expression analysis
from in silico bulks and real whole lung bulk sequencing revealed
a total of 2362 and 9245 differentially expressed genes (negative

binomial generalized linear model, false discovery rate (FDR)
<10%) between the two age groups, respectively (Supplementary
Fig. 4a, b, Supplementary Data 2). From whole lung tissue pro-
teomes we quantified 5212 proteins across conditions and found
213 proteins to be significantly regulated with age (two-sided t-
test, FDR < 10%, Supplementary Fig. 4c, Supplementary Data 2).
We observed very good agreement between the real and in silico
bulk data, thus excluding strong biases by the single-cell isolation
procedures (Fig. 3b). Furthermore, we also observed strong cor-
respondence between the age-dependent alterations in all three
data sets (Fig. 3c), indicating that we were able to pick up robust
age-dependent changes with three independent experimental
settings. Significant correlation was observed between the gene-
level fold changes derived from RNA-seq, scRNA-seq, and pro-
tein expression data (Supplementary Fig. 4d–f).

Prediction of the upstream regulators23 of the observed
expression changes in either the transcriptome or proteome data
gave very similar results (Fig. 2d). In both datasets from
independent mouse cohorts, we discovered a pro-inflammatory
signature, which included upregulation of Il6, Il1b, Tnf, and Ifng,
as well as the downregulation of Pparg and Il10 (Fig. 2d).
Furthermore, to reveal common or distinct regulation of gene
annotation categories in the transcriptome or proteome, we
performed a two-dimensional annotation enrichment analysis24
(Supplementary Data 3). Again, most gene categories regulated by
age were showing the same direction in transcriptome and
proteome so that the positive Pearson's correlation of the
annotation enrichment scores was highly significant (Fig. 2e).
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Fig. 1 A single-cell atlas of mouse lung reveals major cell-type identities. a Experimental design—whole lung single-cell suspensions of young and old mice
were analyzed using the Dropseq workflow. b The t-distributed stochastic neighbor embedding (tSNE) visualization shows unsupervised transcriptome
clustering, revealing 30 distinct cellular identities. c The dotplot shows (1) the percentage of cells expressing the respective selected marker gene using
dot size and (2) the average expression level of that gene based on unique molecular identifier (UMI) counts. Rows represent hierarchically clustered cell
types, demonstrating similarities of transcriptional profiles
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mouse lung atlas: Angelidis et al, Nat Comm 2019 
human lung atlas: Vieira Braga et al, Nat Med 2019 
integrated human lung atlas: Sikkema et al biorxiv

1.18 million cells, 282 samples, 164 donors

covid atlas: Sungnak et al, Nat Med 2020, Muus, Lücken et al, Nat Med 2021



Building a cell atlas?

At its core, a cell atlas would be a collection of cellular reference maps, 
characterizing each of the thousands of cell types in the human body and 
where they are found.

data integration

study cell type user queries, e.g. 
where is my cell?

🥸: 🫁?

Stuart et al. Cell 2019

→ Learning an integrated cell atlas

Luecken et al. Nat Methods 2022

Benchmarking single cell data integration



Deep learning for latent space modeling & integration

14

Eraslan et al, Nat Rev Gen 2019

as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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Fig. 6 | Unsupervised learning. a | An autoencoder consists of two parts: an encoder and a decoder. The encoder 
compresses the input data (depicted as gene expression of differentiating single cells) into a fewer (two shown here) 
dimensions in the so-called bottleneck layer. The decoder tries to reconstruct the original input from the compressed  
data in the bottleneck layer. Reconstruction accuracy is quantified by the loss function between the original data and  
the reconstructed data. Although the pseudotime estimation is not a property of autoencoders, the denoising effect of 
reconstruction can make the underlying structure of the data (for example cellular differentiation process) clearer130.  
b | The bottleneck layer is a low-dimensional representation of the original input revealing the cell differentiation process. 
c | Generative adversarial networks consist of generator and discriminator neural networks that are trained jointly. 
The discriminator classifies whether a given data point was drawn from the real data (circles) or whether it was 
synthetically generated (triangles). The generator aims to generate realistic samples and thereby tries to deceive the 
discriminator into mistakenly classifying synthetic samples as real.

Principal component 
analysis
An unsupervised learning 
algorithm that linearly projects 
data from a high-dimensional 
space to a lower-dimensional 
space while retaining as much 
variance as possible.

t-Distributed stochastic 
neighbour embedding
(t-SNE). An unsupervised 
learning algorithm that projects 
data from a high-dimensional 
space to a lower-dimensional 
space (typically 2D or 3D) in a 
nonlinear fashion while trying 
to preserve the distances 
between points.
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIG. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIG. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro-
babilistic latent representations134–137. These methods 
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Latent space: 
add biological priors

example: linear perturbation effects 
Lotfollahi et al, Nat Methods 2019
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NeurIPS data integration competition (>280 scientists):  
all winning models use neural networks

Luecken et al, Proc NeurIPS 2021
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The integrated reference atlas enables …
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Query-to-reference data integration by transfer learning
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Query-to-reference data integration by transfer learning

 M Lotfallahi 

Lotfollahi et al, Nat Biotech 2022
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Projecting to the HLCA enables rapid analysis of new data

Data from Madissoon et al., bioRxiv (2021)
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Extended Human Lung Cell Atlas: mapping of disease-affected cell states

Works well for single-nucleus, single-cell, various sampling 
methods, drop-seq, 10X, healthy, & most diseases

Measure dataset-level uncertainty to capture residual batch effects

→ label propagation uncertainty highlights disease-affected 
cell states & signatures, e.g. for pulmonary fibrosis

Sikkema et al, biorxiv 2022



Querying an atlas for disease: 
immune response for COVID19  
on lung lavage samples

CD8+ T cells

Macrophages

CXCL10

ex
pr

es
si

on

high

low

FABP4

TRAMs

CCL2
MoMs

TRAMs

TRAMs MoMs

reference

ISG15

query

github.com/theislab/scArches

Lotfollahi et al, Nat Biotech 2021



Outlook: differential biology – deep learning for modeling molecular mechanisms

PERSPECTIVENATURE METHODS

automatically compute the ‘backward’ pass, which specifies how 
changes in parameter values affect model input–output relation-
ships. The backward pass is precisely the computation needed to 
train new models. Modern frameworks come preloaded with a 
variety of ready-to-use neural networks for identifying objects in 
images (for example, cell boundaries7), reading text17 (for example, 
paper abstracts) and reasoning over molecules18. The existence of a 
few widely used frameworks promotes model reuse and has democ-
ratized bespoke model building, making it possible for a large 
community of scientists to contribute. However, democratization 
is a potential cause for concern because subtle errors can still be 
made. Ideally, greater transparency in model formulation, which is 
enhanced by the use of high-level languages and common frame-
works, will make it easier to document and error-check new appli-
cations of ML.

Primitives for a differentiable biology
In the biological context, differentiable programming provides primi-
tives for tackling three conceptually distinct classes of information: 
biological patterns, physical and mechanistic or biophysical priors, 
and experimental and data acquisition priors. Priors constrain the 
space of possible models and enable the use of smaller datasets. The 
most useful and defensible priors are those based on well-understood 
features of physical and chemical systems, such as the range of allow-
able bond angles in a polypeptide chain19. Priors can be interspersed 
with pattern recognizers that learn from data mappings that are too 
complex or poorly understood to be modeled explicitly.

Biological patterns. As a class, pattern recognizers are the most 
mature differentiable programming tools. They have been used to 
learn essential aspects of the retinal fundus20, identify and segment 
cell boundaries in crowded environments such as tissues21 and pre-
dict new cell states from multiplexed immunofluorescence images22. 
The complexity of a pattern recognizer is often determined by the 
structure of the inputs. Images represented by two-dimensional (2D) 
grids of pixels with fixed dimensions (for example, images collected 
by conventional electronic cameras) are among the simplest inputs 
and exhibit shift invariance, which can be used as a prior in model 
training via data augmentation23. ‘Images’ need not be restricted to 
visual patterns. For example, intraprotein contact maps encoding 
residue co-evolution have been used as inputs to convolutional neu-
ral networks (CNNs) to predict protein structure24–27. Generalizing 
2D grids to higher dimensions, for example, by discretizing 3D 
space into equal-sized cubes, has yielded pattern recognizers that 
can operate on high-molecular-weight macromolecules to predict 
protein functions28,29 and the affinity of protein–drug complexes30,31. 
Some of the features learned by these models are human interpre-
table, whereas some are not, owing to their size, complexity or coun-
terintuitive nature, but neural networks are still able to learn them.

Variably sized grids whose dimensions vary with the input data, 
such as one-dimensional grids comprising DNA sequences of vary-
ing length, represent another step up in complexity. For example, 
the patterns underpinning transcription factor binding motifs in 
DNA have long eluded a simple probabilistic code32, but CNNs 
have modeled them with success33,34. Trees and other types of 
graph, which can represent phylogenies, interaction networks and 
molecules, vary not only in length but also in structure and can be 
learned using graph convolutional networks (GCNs)35. GCNs have 
been used to learn mappings from molecules to protein binding 
affinities31 and to perform in silico chemical retrosynthesis36. In all 
of these cases, the key advantage of neural networks is their abil-
ity to recognize multi-way interactions occurring at both small and 
large scales.

While most contemporary ML applications focus on the relation-
ship between complex inputs such as protein structure and simple 
outputs such as binding affinity, differentiable programming allows 
for richer input–output mappings. For example, we have developed 
a differentiable recurrent geometric network (RGN) that learns 
protein structure directly from sequence, taking a variable-length 
protein sequence as input and generating a variably sized set of 
atomic coordinates as output19. More recently, AlphaFold2, devel-
oped by Google’s sister company DeepMind, uses a differentiable 
system to predict single-domain protein structures with accuracy 
approaching that of experimental methods such as crystallography 
(Fig. 1)37,38. The ability to generate complex outputs (for example, 
3D folded proteins) from simple inputs (primary sequence) dem-
onstrates one major advantage of differentiable programs vis-à-vis 
conventional ML methods used for regression and classification. 
The latter are limited to narrow ranges of simple output types, most 
commonly categorical variables or real-valued scalars.

Mechanistic priors. ML research in biology increasingly incor-
porates prior knowledge about structure, chemistry and evolution 
into differentiable programs (Fig. 3a). Prior information can range 
in scope and generality from enumeration of genes or proteins and 
their interactions39 to fundamental biophysics, including features of 
space itself40. For example, interactions within and between mac-
romolecules are translationally and rotationally invariant, and this 
can be formalized by generalizing CNNs from fixed grids (which 
have no guarantee of rotational invariance) to mathematical objects 
known as Lie groups41, which capture rotational symmetry in three 
(or higher) dimensions. In modeling protein–protein interaction 
(PPI) networks, protein folding and similarly complex biologi-
cal phenomena, the incorporation of such priors makes it easier 
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Repeating dynamics

Non-locality

Convolutional Recurrent

Relational Attentional

Group equivariant

Unordered

Translational invariance

Fig. 2 | Neural network primitives. A powerful set of neural network 
building blocks makes it possible to build learnable models that encode 
a variety of inductive priors. Convolutional networks model regular grids 
such as images or sequences, inducing local structure and limited forms 
of spatial invariance such as indifference to shifts in images. They are 
generalized by group-equivariant networks that operate on arbitrary 
point clouds and induce local and global structure as well as more 
general spatial invariances including rotational and translational shifts, 
important in molecular applications. Recurrent networks model sequences 
with repeating dynamics such as time series, music or the actions of a 
computational agent. Relational or graph networks reflect highly structured 
objects with rich interrelationships such as phylogenetic trees. Attentional 
networks, on the other hand, essentially assume no underlying structure 
and are capable of inferring arbitrarily complex relationships, including 
long-range interactions that have historically been difficult to capture with 
conventional mathematical models. This ability has been crucial to the 
development of accurate methods for protein structure prediction. These 
primitives can be combined to yield even more complex combinations, for 
example, group-equivariant attentional networks60.
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to capture distance-dependent physical interactions (for example, 
rotationally invariant electrostatic forces). Recent progress in equi-
variant networks on Lie groups has been swift42, including applica-
tions in molecular sciences43—most prominently, protein folding, 
but the problem and attendant approaches remain far from solved. 
When such approaches become broadly deployable, they may prove 
to be as consequential for molecular systems as convolutional net-
works have been for image data: the analogy here is between shift 
invariance and rotational symmetry (in practice, there are subtle-
ties even within shift invariance, for example, local versus global 
invariance14).

A valuable aspect of bespoke ML models in biomedical applica-
tions is that they can incorporate detailed information on the struc-
tural and chemical properties of macromolecules. For example, 
because of divergent and convergent evolution, many proteins use 
similar structural features for binding other biomolecules44–46. These 
features constitute the vocabulary of protein binding surfaces and, 
once learned, can be reused across domain families to increase pre-
dictive power. By formalizing these ideas mathematically, it is pos-
sible to incentivize models to encode interactions across a protein 
family using a small set of binding surfaces or to prefer that evolu-
tionarily related proteins share binding partners. The assumption 

here is that related proteins have similar contact surfaces and part-
ners. The implication of ‘incentivize’ or ‘prefer’ in this context is that 
these are constraints whose magnitude is learned directly from the 
data—not prespecified. Pursuing this line of reasoning, we recently 
developed a model47 for predicting the ligands of peptide-binding 
domains (PBDs) involved in signal transduction (for example, the 
Src homology 2 and 3 domains). We incorporated the concept of 
shared and reused binding surfaces by sharing energy potentials 
across PBD families, implicitly creating an energetic ‘lingua franca’ 
for this type of macromolecular interaction. Energy potentials were 
learned, not prescribed (only the notion of reuse was assumed), and 
were found to improve model accuracy, particularly in data-poor 
domains. Incidentally, our PBD–ligand interaction model47 was 
fully differentiable but did not make use of neural networks. Models 
incorporating geometrically aware neural networks and the concept 
of binding surface reuse are also showing promise45,48. A related 
approach, based on the simple idea that a protein’s active site uses 
the same set of atoms to bind diverse small molecules, resulted in 
substantial advances in predicting protein–ligand interactions49.

When modeling biological networks, yet more specialized priors 
are possible. For example, joint modeling of transcriptional, pro-
teomic and phosphoproteomic time series data can be enhanced 
by imposing time separation between phosphosignaling and tran-
scriptional regulation, as the former often occurs on a more rapid 
timescale than the latter, or by encouraging signaling cascades to 
terminate on a transcriptional change (which is implicitly another 
form of timescale separation). Such high-level knowledge can be 
combined with molecular data on specific signaling pathways (for 
example, the structure of the MAPK kinase cascade) or transcrip-
tion factor binding motifs (Fig. 3b). In such a hypothetical model, 
the matrix of all possible protein–protein and protein–DNA inter-
actions would be inferred, with some interacting pairs already 
predetermined (for example, from the literature or focused experi-
mentation) and some merely encouraged or discouraged on the 
basis of knowledge of the archetypical interactions they represent.

Data priors. Most modeling in biology involves analysis of incom-
plete, noisy and heterogeneous data. Incorporating priors that 
account for the data generation process is necessary to minimize the 
effects of error and fuse disparate data types. Data normalization is 
another process that is ad hoc to a problematic degree. Data pro-
cessing invariably includes adjustable parameters that are fit heu-
ristically, typically one step at a time. Differentiable programming 
offers a fundamentally different approach: adjustable parameters 
can be optimized within a broader problem framework that involves 
evaluation of a hypothesis or prediction of outcome (for example, 
cell state). Parameters of both the experimental and computational 
aspects of the model can then be jointly fit to maximize predictive 
power. Few examples of such joint learning have appeared, but pre-
processing steps for microscopy-based imaging (for example, image 
segmentation50 and classification51) already incorporate learning 
elements. This is not a ‘glamorous’ application of ML, but it will 
prove to be one of the more consequential areas for differentiable 
programming if it can make the connection between data and mod-
els more accurate, robust and informative.

Random error is present in all real-world data, and most molec-
ular measurements are also subject to poorly understood system-
atic error. Physics-based error modeling is common in structural 
biology and high-resolution optical microscopy, domains in which 
enough is known about the measurement process and the range of 
expected physical phenomena that many types of uncertainty can be 
quantified and modeled. While this approach is in principle trans-
ferable to other biological assays52,53, sophisticated error models are 
relatively rare in biomedical research, usually because the underly-
ing physical processes are not sufficiently understood. In this case, 
simple parametrizations of the error may be possible, for example, 
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Fig. 3 | Differentiable programming fuses principles-based and 
data-driven modeling. a, Three types of primitive underlie the emerging 
field of differentiable biology: biological pattern recognizers that perform 
mappings too complex to be interpretable, such as predicting the DNA 
binding motif of a transcription factor from its structure (left); mechanistic 
priors that encode existing biological knowledge, such as known signaling 
pathways (middle); and data priors that capture the data acquisition 
process, for example, the physical process underlying mass spectrometry 
(right). b, In conventional modeling, principles-based and data-driven 
approaches are used largely independently. Differentiable programming 
makes it possible to build bespoke systems that intermingle the two types 
of approach in a manner that best reflects the desired modeling task.
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to capture distance-dependent physical interactions (for example, 
rotationally invariant electrostatic forces). Recent progress in equi-
variant networks on Lie groups has been swift42, including applica-
tions in molecular sciences43—most prominently, protein folding, 
but the problem and attendant approaches remain far from solved. 
When such approaches become broadly deployable, they may prove 
to be as consequential for molecular systems as convolutional net-
works have been for image data: the analogy here is between shift 
invariance and rotational symmetry (in practice, there are subtle-
ties even within shift invariance, for example, local versus global 
invariance14).

A valuable aspect of bespoke ML models in biomedical applica-
tions is that they can incorporate detailed information on the struc-
tural and chemical properties of macromolecules. For example, 
because of divergent and convergent evolution, many proteins use 
similar structural features for binding other biomolecules44–46. These 
features constitute the vocabulary of protein binding surfaces and, 
once learned, can be reused across domain families to increase pre-
dictive power. By formalizing these ideas mathematically, it is pos-
sible to incentivize models to encode interactions across a protein 
family using a small set of binding surfaces or to prefer that evolu-
tionarily related proteins share binding partners. The assumption 

here is that related proteins have similar contact surfaces and part-
ners. The implication of ‘incentivize’ or ‘prefer’ in this context is that 
these are constraints whose magnitude is learned directly from the 
data—not prespecified. Pursuing this line of reasoning, we recently 
developed a model47 for predicting the ligands of peptide-binding 
domains (PBDs) involved in signal transduction (for example, the 
Src homology 2 and 3 domains). We incorporated the concept of 
shared and reused binding surfaces by sharing energy potentials 
across PBD families, implicitly creating an energetic ‘lingua franca’ 
for this type of macromolecular interaction. Energy potentials were 
learned, not prescribed (only the notion of reuse was assumed), and 
were found to improve model accuracy, particularly in data-poor 
domains. Incidentally, our PBD–ligand interaction model47 was 
fully differentiable but did not make use of neural networks. Models 
incorporating geometrically aware neural networks and the concept 
of binding surface reuse are also showing promise45,48. A related 
approach, based on the simple idea that a protein’s active site uses 
the same set of atoms to bind diverse small molecules, resulted in 
substantial advances in predicting protein–ligand interactions49.

When modeling biological networks, yet more specialized priors 
are possible. For example, joint modeling of transcriptional, pro-
teomic and phosphoproteomic time series data can be enhanced 
by imposing time separation between phosphosignaling and tran-
scriptional regulation, as the former often occurs on a more rapid 
timescale than the latter, or by encouraging signaling cascades to 
terminate on a transcriptional change (which is implicitly another 
form of timescale separation). Such high-level knowledge can be 
combined with molecular data on specific signaling pathways (for 
example, the structure of the MAPK kinase cascade) or transcrip-
tion factor binding motifs (Fig. 3b). In such a hypothetical model, 
the matrix of all possible protein–protein and protein–DNA inter-
actions would be inferred, with some interacting pairs already 
predetermined (for example, from the literature or focused experi-
mentation) and some merely encouraged or discouraged on the 
basis of knowledge of the archetypical interactions they represent.

Data priors. Most modeling in biology involves analysis of incom-
plete, noisy and heterogeneous data. Incorporating priors that 
account for the data generation process is necessary to minimize the 
effects of error and fuse disparate data types. Data normalization is 
another process that is ad hoc to a problematic degree. Data pro-
cessing invariably includes adjustable parameters that are fit heu-
ristically, typically one step at a time. Differentiable programming 
offers a fundamentally different approach: adjustable parameters 
can be optimized within a broader problem framework that involves 
evaluation of a hypothesis or prediction of outcome (for example, 
cell state). Parameters of both the experimental and computational 
aspects of the model can then be jointly fit to maximize predictive 
power. Few examples of such joint learning have appeared, but pre-
processing steps for microscopy-based imaging (for example, image 
segmentation50 and classification51) already incorporate learning 
elements. This is not a ‘glamorous’ application of ML, but it will 
prove to be one of the more consequential areas for differentiable 
programming if it can make the connection between data and mod-
els more accurate, robust and informative.

Random error is present in all real-world data, and most molec-
ular measurements are also subject to poorly understood system-
atic error. Physics-based error modeling is common in structural 
biology and high-resolution optical microscopy, domains in which 
enough is known about the measurement process and the range of 
expected physical phenomena that many types of uncertainty can be 
quantified and modeled. While this approach is in principle trans-
ferable to other biological assays52,53, sophisticated error models are 
relatively rare in biomedical research, usually because the underly-
ing physical processes are not sufficiently understood. In this case, 
simple parametrizations of the error may be possible, for example, 
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Fig. 3 | Differentiable programming fuses principles-based and 
data-driven modeling. a, Three types of primitive underlie the emerging 
field of differentiable biology: biological pattern recognizers that perform 
mappings too complex to be interpretable, such as predicting the DNA 
binding motif of a transcription factor from its structure (left); mechanistic 
priors that encode existing biological knowledge, such as known signaling 
pathways (middle); and data priors that capture the data acquisition 
process, for example, the physical process underlying mass spectrometry 
(right). b, In conventional modeling, principles-based and data-driven 
approaches are used largely independently. Differentiable programming 
makes it possible to build bespoke systems that intermingle the two types 
of approach in a manner that best reflects the desired modeling task.
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→ questions: reuse primitives? add constraints?



Outlook: towards adaptive ML via continual learning

new data (samples) 
- transfer to new domain 
- reuse that model 
- loop into experimental design (perturbations etc)

new features 
- add additional views to the model 
- extend feature space, potentially link mechanistically

new models (prior information) 
- model a particular modality/view of your problem 
- then analyse & interpret 
- extend with prior knowledge or constrain with 

mechanistic information
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conclusion 

» building an integrated Human Lung Cell atlas across 44 
data sets 

» scArches & extensions: transfer learning for efficient 
reference atlas reuse 

» sfaira - sc data management made simple 

outlook 

» building large-scale & multimodal reference atlases 

» sfairaZero: learning a 30M-cells organism-level atlas 

» spatial transcriptomics -> towards multi-scale modeling 

» (causal) learning from perturbations &  
experimental design 

» towards continual learning
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