

DEELS-2022, June 7-8 Berlin

X-BPM development at the ESRF

indispensable use for verifying the genuine stability of our source

contents

- situation with the Bending-Magnet sources
- using a Front-End chamber @23m from source for an insertive, optical X-BPM (since Oct. 2021)
- results obtained during a (rare) 6 days period
 with comparison from e-BPMs → discrepancies !
- tracking deficiencies of our orbit stabilization,
 → coming from temperature effects on Spark BPMs
- plans for future version, for permanent use !

but where have the **bending-magnets** gone ? we had (and still have) ID 17 BM beam-lines ... **BM ? ?** permanent magnet dipole quadrupole ID sexrupole combined dipole-quadrupole (DQ) DQ1D octupole DQ2C 0.57 T 0.39 T 110 mm drift space for new additional source DQ2C DQ1D 0.39 T 0.57 T

new multi-bend lattice to create EBS (low-emittance Ring)

these BM-beamlines had the choice between three types of new sources :

each compatible for installation in that 110 mm free drift space

the Front-Ends remained largely un-changed and still had a big chamber available at 23 m from source ...

BM-8, **LISA**, Linea Italiana per la Spettroscopia d'Assorbimento X, Francesco d'Acapito, 2426, 2085

BM-16, FAME-UHD, French Absorption spectroscopy in Material and Environmental sciences at Ultra-High Dilution, J-L Hazemann, D.Testemale, O.Proux, I.Kieffer, M.Rovezzi (7407, 1045, 2547, 2521, 2963)

an image of the X-ray beam is projected on the scintillator (green) the light emitted from that is captured/focused on to a camera via mirror (blue), window, lenses

note that a water-cooled absorber is in front of the scintillator, but this also means that this X-BPM is not compatible with BM-use during USM, however very useful during MDTs ! so when the BM uses the beam then this X-BPM is OUT (>15mm)

camera 2x2 binning, 0dB gain, 400ms exposure-time

<u>comparing</u> the vertical position of the <u>new X-BPM</u> with that from the <u>e-BPMs in the Ring</u>

Pos V = 0.8060 *V_BPM_6 + 0.0990 *V_BPM_7 Ang V = -0.9696 *V_BPM_6 + 0.49478 *V_BPM_7

67 continuous hours in 20mA, 10-12 December 2020

BM-16

observation :

the X-BPM and e-BPM results drift in opposite direction, attaining 150um difference ...

```
in contradiction to what is so often said
about EBS positional stability ("very good", "excellent", "perfect")
we now have clear indication/proof that it is NOT ...
1) what is the cause ? 2) what can we do about it ?
```

strong correlation between BM-16 X-BPM and temperature of that C16-6 Spark

this measurement was only possible since BM-16 allowed us to keep the X-BPM inserted for a full 6 days

X-BPM-BM16 and temperature variation (blue) of Spark BPM C16-6

temperature fluctuations in the TZs and their effect on beam stability

this "open-office" concept is >30 years old

the cubicles are exposed to both regular (day / night) and erratic changes of temperature

the temperature control in the TZs is very rudimentary

and difficult to now improve

this "open-office" concept is >30 years old

the temperature control in the TZs is very rudimentary

so a special measurement was done at a recent MDT :

 \rightarrow create temperature shock with orbit correction OFF \rightarrow and then measure the effects

thermal shock measurements of the sensitivity of all the 320 BPM readings to temperature variations

method (in about 1 full hour) :

- normal & stable beam conditions, but all orbit feedback OFF
- opening all 32 cubicle doors \rightarrow creates a temperature variation
- measure the position drifts of all individual 320 BPMs
- measure the individual temperature of these BPMs

the division of positional drift by thermal variation gives us this sensitivity

Time (approx. 40min)

sensitivity of vertical position to temperature of the 128 Sparks

add local temperature control in our BPM cubicles (by Diag. group)

Aim : reduce the temperature variations, in a 24h period, by a factor 4 or more

Method : use the always cooler air of the TZ to stabilize the Spark temperature by only small controlled ventilators, i.e. NO water-cooling or complexity

home-made solution

costs of 500 Euros per unit (cubicle)

proposal, the non-interceptive optical X-BPM

possibility to take the "next-door" X-rays for beam position monitoring ...

this shift of the longitudinal measurement point is not a problem :

absence of orbit corrector between the X-BPM source and the BM source

the magnets (DQs and QF8) not changed during a run and very rarely between runs

absence of non-linear element (sextupole/octupole) between the 2 sources

now, version-1 000 0

same concept also applicable for the 2PW and 3PW bending sources (in principle)

next, version-2 : - permanent use ! - no UHV translation mechanism !

installation in August shut-down ?? more realistic : October shut-down this Poor Man's X-BPM, using "next door" X-rays, costing about 5K€

will never win a price ... (•••)

but for us it will be an indispensable tool for verifying the vertical stability of our BM-lines

thank you for your attention !

