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Outline

1.  Explosive hydrogen burning

a) Classical novae

b) X-ray bursts

2.  Thermonuclear reaction rates

3.  Classical novae: the 18F(p,)15O case

4.  X-ray bursts: the 15O(,)19Ne case

Classical nova

Nova Cygni 1992, HST X-ray burst light curve

18F(p,)15O
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Explosive hydrogen burning in binary systems

artist’s view

Type I X-ray outbursts
● Very fast rise times: 2 – 10 s
● L

peak
 ~ 1038 erg s-1 

           (ccSN L
peak

 ~ 1051 erg.s-1)
● Short duration: 10 – 100 s
● Recurence time: ~ hours – days
● Mass ejected: unlikely

Thermonuclear runaways in the white dwarf/neutron star component of close binary systems

Classical novae outbursts
● Moderate rise times: < 1 – 2 days
● L

peak
 ~ 104 L⊙

● Recurence time: ~ 104 – 105 yr
● Frequency: 30 ± 10 yr-1

● Mass ejected: 10-5 – 10-4 M⊙

        
(102 – 103 km.s-1)

Compact 
object:

White
 Dwarf

Compact object:

Neutron star
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Classical novae explosions

Final evolution of a close binary system Classical novae mechanism
● Accretion of H-rich material at the surface of a 

white dwarf (WD) from its companion star

● Ignition of the combustion at 
the base of the envelope in 
degenerated conditions

● Thermonuclear runaway in 
convective envelope (T

peak
 ~ 

100 – 400 MK)

● Expansion and shell ejection

● Mechanism well established but:

→ ejected mass < observed mass

→ mixing between accreted and WD material 

novae ccSN

M
ej
 (M⊙) ~ 10-5 ~ 10

f (yr-1 galaxy-1) ~ 30 ~ 10-2

L (L⊙) ~ 105 ~ 1011

Nucleosynthesis 13C, 15N, 17O “~ all”

Classical nova

Nova Cygni 1992, HST

Classical novae types
● 12C16O and 16O20Ne (M

WD
 < 1.35 M⊙)

● Different properties (nucleosynthesis...)
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Nuclear network and uncertainties
● Main nuclear path close to the 

valley of stability, and driven by 
(p,), (p,) and + interactions

→ ~ 100 nuclides

→ ~ 180 reactions

● End point of nucleosynthesis: Ca

● Sensitivity studies allow to 
identify key reactions

● First stellar explosions for which 
all reaction rates will soon be 
based on experimental 
information
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18F – 511 keV line prediction – 18F(p,)15O

WD

Classical nova

 511 keV
e-

e-

e-

e+

e+

ONe nova: 1.15 / 1.25 M⊙ (solid/dashed)

1 kpc Model
Expanding 

shell

e+ - e- interactions:
● Line @ 511 keV
● Continuum  511 keV

● Comptonization
● e+ + e- → 3 (positronium)
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Properties of the 
expanding envelope

● T
1/2

(18F) = 110 min
● Similar to the time 

for the shell to 
become transparent

Predicted -ray flux directly depends on the 18F(p,)15O reaction
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Type I X-ray bursts light curves
Precision X-ray observationsRecurrent thermonuclear flashes [e.g. 4U/MXB 1820-30]

Understand the luminosity profile: one of the most important challenge
● Sensitive to NS spin frequency (oscillations in rise part of light curve)

→ link to 2D flame propagation + NS properties (M, R)
● Sensitive to nuclear network

→ composition of burst ashes (superburst) + burst ejecta (?)

But…
● Very sensitive to nuclear input
● Nuclear physics inputs primarily based on theoretical models
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Effect of weak rates
S. Bhattacharyya+ (2007) 

J. Nattila+ (2017) 
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Nuclear network and uncertainties
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 O (8)
 F (9)

Ne (10)
Na (11)

Mg (12)
Al (13)
Si (14)
 P (15)

 S (16)
Cl (17)

Ar (18)
 K (19)

Ca (20)
Sc (21)

Ti (22)
 V (23)

Cr (24)
Mn (25)

Fe (26)
Co (27)

Ni (28)
Cu (29)

Zn (30)
Ga (31)

Ge (32)
As (33)

Se (34)
Br (35)
Kr (36)
Rb (37)

Sr (38)
 Y (39)

Zr (40)
Nb (41)

Mo (42)
Tc (43)

Ru (44)
Rh (45)
Pd (46)
Ag (47)

Cd (48)
In (49)

Sn (50)
Sb (51)

Te (52)
 I (53)

Xe (54)

3 reaction
 +  +  12C

p-process:
14O(,p)17F + 17F(p,)
18Ne(,p)21Na
30S(,p)33Cl
…

rp-process:
(p,) reactions

● Main nuclear path far from the 
valley of stability
→ ~ 300 – 500 relevant nuclides
→ several thousands reactions

● End point of nucleosynthesis:
Sn–Sb–Te cycle 

Nuclear Physics inputs
● Mass measurements along rp-process path
● Key reactions
● ...

Sensitivity studies

Only a few tens of key reactions are 

important
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Hot CNO cycle
15O(,)19Ne + 18Ne(,p)21Na

Adapted from H. Schatz
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Role and impact of 15O(,)19Ne
15O(,)19Ne affects the onset and 
shape of the burst light curve
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15O(,)19Ne provides a way to 
break out from hot CNO cycle

T ≥ 0.4 GK
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Reaction rate

● The reaction rate is the number of reactions 1 + 2 → 3 + 4 [notation: 1(2,3)4] per unit volume and time:

where N
i
 is the density of particle i (cm-3), 

123
(v) the cross-section (probability that the nuclear reaction 

occur), (v)dv the probability for the relative speed between 1 and 2 to be in the range [v,v+dv], and <v>
123

 
is the reaction rate per particle pair (cm3 s-1).

1+
12

 = 2 if 1 ≡ 2, otherwise each pair would be counted twice.

 in practice N
A
<v> in cm3 mol-1 s-1 is tabulated in litterature

« projectiles » “target nuclei”
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Thermonuclear reaction rates

● In a stellar plasma, the kinetic energy of nuclei is given by the thermal agitation velocity

 thermonuclear reaction rate

● For a non-degenerate perfect gas, the velocity is given by the Maxwell-Boltzmann distribution:

● One obtains for the reaction rate per particle pair (in cm3 s-1) as a function of energy:
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The astrophysical S-factor

S(E): astrophysical S-factor which contains all the nuclear effects 
for a given reaction

Correction of the 
effect 

max
   1/E

Correction of the  
tunneling probability 
(ℓ = 0)

● (sometimes) S(E) is a 
smoothly varying function

● Most of the cases, 
extrapolation to astrophysical 
energies needed!

Energies of interest
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Gamow peak & non-resonant case
Reaction rate:

If the S-factor is smoothly varying (“non-resonant”):

Gamow peak is the energy range where most reactions 
between 1 and 2 occur

12C(,)16O, T = 0.2 GK

Approximation by a Gaussian curve:

[: total width at 1/e; T
6
 ≡T (MK)]
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The narrow resonance case
● Contribution to the reaction rate of a resonance at the 

energy E
R
 close to E

0
:

● For a narrow resonance: Maxwell-boltzmann distribution ~ constant

● If the partial widths (
i
) are constants over  << E

R
:

with

is the resonance strength

a + A

b + B

C

J, E
R
, , 

a
, 

b
, , ...

 Q

S
b

S
a


b


a

Reaction a + A → C → b + B
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Experimental strategy

LOG
SCALE 

direct measurements

E0 Ecoul

Coulomb 
barrier

(E)

non-resonant

resonance

extrapolation 
needed !



non resonant 
capture

interaction energy E

extrapolation direct measurement

0

S(E)
LINEAR
SCALE 

Problems with  EXTRAPOLATION !

Er

low-energy tail
of broad 
resonance

Astrophysical S-factorCross section

-Er

sub-threshold 
resonance

● Measurement of cross section at higher energies and extrapolation to astrophysical energies E
0
 

→ direct measurement approach
● Determination of resonant state properties (E

R
, partial widths 

i
, J) 

→ indirect measurement approach
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Direct measurements: requirements and challenges
Low cross section → low yields → poor signal-to-noise ratio

Sources of background
● Beam induced

● Reactions with impurities in the target
● Reactions on beam collimators/apertures

● Non beam-induced
● Interaction from cosmic muons with detection setup
● Charged particles / -rays from natural background
● Neutron induced reactions

Requirements & challenges → 
● Improving signal 

● Very long measurements (weeks, months…)
● High beam intensities: heating effects on target (limitation)
● Thicker targets (?): exponential drop of the cross section
● High detection efficiency

● Reducing noise/background
● Ultra pure targets: difficult
● Dedicated experimental setup

Improving signal-to-noise ratio

● Coincidence measurements (STELLA…)
● Recoil mass separator (DRAGON…)
● Underground laboratory (LUNA, Felsenkeller...)

see lecture from C. Bruno on Saturday
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Indirect measurements

Main idea:
● Perform experiments above the Coulomb barrier at high energy (~ few – 10’s of MeV/u) 

→ higher cross sections than for direct measurements

Pros and Cons:
● Experimental conditions are relatively less constraining than for direct measurement (not necessarily true 

with RIB studies)

● Results are model dependent
● Results depend on the uncertainties relative to the different model parameters

● Examples of indirect methods:
● Transfer reactions, Asymptotic Normalization Coefficient (ANC) method, Trojan Horse Method (THM), 

surrogate method, Coulomb dissociation...

Cross-section of astrophysical interest not measured directly

 

 

see lecture from A. Spyrou on Friday
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19Ne and 19F spectroscopy
Useful information:

● 18F + p → 19Ne →  + 15O
(1+)  (1/2+)      (0+)    (1/2-)

● Compound nucleus: 19Ne
● ℓ

p
 = 0 resonances: J = 1/2+, 3/2+

● S
p
 = 6.410 MeV; S = 3.528 MeV

Gamow window:
● T

9
 = 0.1 → E

0
 = 112 keV;  = 72 keV

● T
9
 = 0.4 → E

0
 = 282 keV;  = 228 keV

● Center of mass: [76 keV; 396 keV]
● 19Ne excitation energy: [6.486 MeV; 6.638 MeV]

Mirror nuclei: 19Ne ↔ 19F
● Swapped number of protons and neutrons

Analog states:
● Similar properties (J, 

i 
...)

status beginning of 2000
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18F(p,)15O astrophysical S-factor

Main questions:
● Existence of close to threshold 

3/2+? How many? Properties?
● Interference effect between 3/2+ 

states?
● Existence of sub-threshold 1/2+ 

state?
● Interference between 1/2+ states?

What to measure?

●

● Low-lying resonances:

● Interferences → direct measurement

status beginning of 2000
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Experimental method Transfer
reaction

Low-energy ℓ
p 
= 0 

resonances

 18F + p: direct measurement impossible!

 E
R
 = 40 keV << B

C
 = 2.6 MeV

●  < 10-11 eV << (330 keV) = 1.48 eV

 Rely on information concerning analog levels

  in 19F (3/2+ states separated by 30 keV)

 Neutron transfer reaction:

d(18F,p)19F*

 DWBA (Distorted Wave Born Approximation) analysis:

                                                   and

S. Utku+ (1998) 

S
n,p

: spectrosopic factor
C: isospin factor (= 1 here)


s.p.
: single-particle width (calculation)
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Transfer reactions in a nutshell Transfer
reaction

Low-energy ℓ
p 
= 0 

resonances

Example of the 18F(d,p)19F transfer reaction

DWBA main assumptions
● The transferred nucleon/cluster is directly deposited on its orbital 

→ no nucleon rearrangment in the final nucleus (19F)
● The entrance and exit channels are dominated by elastic scattering → Distorted Wave
● The transfer process is weak enough to be treated as a first order perturbation → Born Approximation

Réaction de transfert : 18F(d,p)19Fp

n

18F 18F

d

19F

protons neutrons
1s1/2

1p1/2

1p3/2

1d5/2

2s1/2

ℓ = 0

core

DWBA: Distorted Wave Born Approximation
● The simplest theoretical model to describe a transfer reaction
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Experimental setup

LEDA – LAMP in coincidences
● Protons at forward angles in the c.o.m
● 15N at forward angles in the laboratory

Detector positioning
● LAMP: solid angle
● LEDA: coincidence efficincy (20%)

Transfer
reaction

Low-energy ℓ
p 
= 0 

resonances

Target thickness (CD
2
 = 100 g/cm2)

● Compromise between energy 
resolution and counting rate

LEDA & LAMP detectors
● Single sided Silicon detectors
● Sectors with 16 annular strips
● Energy resolution ~ 30 keV (FWHM)

Davinson+ (2000) 

d(18F,p)19F* →  + 15N

N. de Séréville+ (2007) 

Louvain-la-Neuve
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Identification of 3/2+ states in 19F Transfer
reaction

Low-energy ℓ
p 
= 0 

resonances

Kinematic lines

Different slopes indicate 
different 2-body reactions

p+19F

p+19F

+16O

+16O

Angular distribution + DWBA

● Direct mechanism → ℓ
p
 = 0

● C2S
p
 = 0.21

● Importance of 3/2+ states

compound nucleus

N. de Séréville+ (2007) 

Reconstructed excitation energy

● Conservation of energy and momentum

● Known beam energy + (E
p
,

p
)

→ calculation of excitation energy

(FWHM ≈ 100 keV)

3/
2+
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Search for 19Ne 3/2+ states Charge exchange
reaction

Low-energy ℓ
p 
= 0 

resonances

Q3D magnetic spectrograph
● E/E = 2 10-4

●  = 14 msr

Experimental conditions
● 3He beam @ 25 MeV, 200 enA
● Targets CaF

2
 (50 g/cm2) + 12C (7 g/cm2)

● 7 detection angles between 
lab

 = 10° and 50°
● ~14 keV resolution (FWHM)

Focal plane cross-section

W
irt

h
 (

19
91

),
 P

h
D

beam

● E: multi-wire proportional counter (MWPC)
● E & position: MWPC with stripped cathode
● E: plastic scintillator

Particle Identification

B = mv/q

19F(3He,t)19Ne
(3He,t) reaction not selective at low energy

A. M. Laird+ (2013)
A. Parikh+ (2015)
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Where are the 3/2+ states? Charge exchange
reaction

Low-energy ℓ
p 
= 0 

resonances


lab

 = 15°

 20°


lab

 = 30°

Triton magnetic 
rigidity spectra

S
p
(19

N
e)

Increasing E
x

● Triplet of states just above the 
p+18F threshold [instead of doublet]

20 40 60

● Compare angular 
distribution with 
known 3/2+ state

(3He,t) angular 
distributions

● Very different angular distributions

→ different spin/parity
● DWBA analysis not “straightforward”

→ 2 steps (3He,d)(d,t)

→ assumes information on intermediate 
states in 20Ne

d
/

d
 (

b
/s

r)

A. M. Laird+ (2013)
A. Parikh+ (2015)
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Improving on energy resolution Charge exchange
reaction

Low-energy ℓ
p 
= 0 

resonances

19F(3He,t)19Ne*()19Ne
g.s.

 @ 30 MeV, 2.5 pnA, CaF2 (~1 mg/cm2)

● Use of efficient -ray array → compact geometry

→ GAMMASPHERE (92 HPGe + BGO shield)
● Need to tag the reaction channel → triton detection

→ ORRUBA (silicon array)
● SX3/BB10 barrel of resistive strip detectors
● QQQ5 endcaps with striped detectors

G
O

D
D

E
S

S

GAMMASPHERE

QQQ5 (100 m + 1 mm)BB10 / SX3 (65 m + 1 mm)

M. R. Hall+ (2019)
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Indication of 3/2+ states in 19Ne? Charge exchange
reaction

Low-energy ℓ
p 
= 0 

resonances

● Found -rays for two potential 3/2+ states in 19Ne
● Based on similar -ray decays for these 2 states 

as for 3/2+ state -ray decays in mirror nucleus 19F

M. R. Hall+ (2019)

19Ne19F
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Interferences between 3/2+ states Direct 
measurement

Interference sign 
of 3/2+ states

N
. 
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● Interferences between the E
R
 = 38 keV 

and 665 keV resonances

→ -particle width is varied from  = 

0.86 keV to 21.5 keV

● Destructive cases have strongest 
impact in Gamow window

● Existing data does not allow to 
discriminate between different cases

→ direct measurements are needed

D. Bardayan+ (2002) 
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Direct measurement 1H(18F,)15O



15O

LEDA detectors

S2 DSSSD detectors

(CH2)n

18F
beam

TUDA array

Experimental setup
→ coincident measurement

● Beam: 18F (5106 pps) produced at ISAC (Isotope Separator 
& Accelerator; TRIUMF; Canada) by bombarding a thick 
target with 500 MeV proton (up to 100 A)

● Target: 33 g/cm2 CH
2

● Charged particle detectors
● TUDA → -particles
● S2 → 15O

TUDA detectors

Direct 
measurement

Interference sign 
of 3/2+ states

C. E. Beer+ (2011)
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Constructive or destructive?

elastic

2 events!!

2 
ev

en
ts

!!

E(LEDA; ) v.s. E(S2; heavy) Q-value spectrum

Ec.m. = 673 keV

Direct 
measurement

Interference sign 
of 3/2+ states

Improved statistics still needed to determine the sign of interference → new experiment being setting up @ TRIUMF

C. E. Beer+ (2011)

A. M. Laird+
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Outline

1.  Explosive hydrogen burning

a) Classical novae

b) X-ray bursts

2.  Thermonuclear reaction rates

3.  Classical novae: the 18F(p,)15O case

4.  X-ray bursts: the 15O(,)19Ne case

Classical nova

Nova Cygni 1992, HST X-ray burst light curve

18F(p,)15O
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19Ne and 19F spectroscopy
Useful information:

● 15O +  → 19Ne + 
(1/2-)   (0+)

● Compound nucleus: 19Ne
● ℓ = 0 resonances: J = 1/2-

● ℓ = 1 resonances: J = 3/2+

● S
p
 = 6.410 MeV; S = 3.528 MeV

Gamow window:
● T

9
 = 0.4 → E

0
 = 617 keV;    = 337 keV

● T
9
 = 1    → E

0
 = 1137 keV;  = 723 keV

● Center of mass: [450 keV; 1500 keV]
● 19Ne excitation energy: [3.980 MeV; 5.027 MeV]

Mirror nuclei: 19Ne ↔ 19F
● Swapped number of protons and neutrons

Analog states:
● Similar properties (J, 

i 
...)
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What to measure and how?
Thermonuclear reaction rate Narrow resonance case

●

●

● Close to -particle threshold (case of E
x
 = 4.033 MeV state)

→

→ resonance strength proportional to the -particle width 
(smaller partial width)● Dominant state at E

x
 = 4.033 MeV 

(E
R
 = 505 keV; J = 3/2+; ℓ = 1) 

Experimental approaches
● Direct measurement: requires ~ 1010 pps of low-energy 15O RIB [not available]

● Indirect approach:

● Transfer reaction approach: 

● Measurement of  branching ratio B

● Measurement of state lifetime  ∝ 1/

● Measurement of  spectroscopic factor C2S

B
. 
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20
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Doppler-Shift Attenuation Method
DSAM: Doppler-Shift Attenuation Method

→ lifetime of state infered from the measured decaying -ray energy distribution

Doppler effect

● Detected -ray energy (E) depends on the speed (v) of the nucleus 

at emission time and on the angle () between the observer and the 
emitting nucleus direction

●

DSAM principle
● Population of state of interest through a 

chosen nuclear reaction
● Slowing and stopping of recoil nucleus
● -ray emission at range of velocities

beam

Target
(reaction)

Backing
(stopper)

recoil: v(t)

Detector
(HPGe)

N
um

br
e 

o
f c

ou
nt

s

-ray line shape is sensitive to the lifetime of nuclear states

Fully shifted
 < 

stopping

Partialy shifted
 ≈ 

stopping

Fully stopped
 > 

stopping

DSAMLifetime of the 
4.033 MeV state
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Lifetime measurement results

Experimental set-up

● 3He(20Ne,)19Ne* @ 34 MeV [TRIUMF]

● 3He (6x1017 cm-2) implanted in 12.5 m 
Au foil 

● 2 HPGe at 0° and 90°

● E (25 m) - E (500 m) silicon detectors 
telescope

→ coincidence - measurement

Reaction channel identification

● Wide range of particle energy

→ fusion-evaporation 20Ne + 12C 
(contaminant) 

● Hatched area [E = 11 – 13 MeV]

→ -particles corresponding to 
population of 4.033 MeV state

E = 4033 keV line shape

●

● Good agreement with existing 
works:
●

●

HPGe @ 0°  =   4 fs
 = 11 fs
 = 19 fs

W. P. Tan+ (2005) 

S. Mythili+ (2008) 

Lifetime of the 
4.033 MeV state

DSAM

R. Kanungo+ (2006)
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How to determine branching ratios

-particle branching ratio                is the probability for an unbound state to decay through  emission

Experimentally: coincidence measurement
● Detector close to 0° (silicon, spectrometer…)

● Detection of particles allowing the identification of the reaction and states of interest (2-body kinematics)

→ “single” events N
singles

 

● Strong alignment of magnetic substates

● Silicon detector array (stripped) surrounding the target
● Detection of decaying particles

→ “coincident” events N
coinc

● Angular correlation measurement

→ use to determine the number of decay N
decays

● Branching ratios
Challenge: low-energy -particle (< 1 MeV)

● Thin target, thin detector dead layer, low electronic threshold

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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Branching ratio results

Triton energy spectrum (single) -particle energy spectrum (-t coincidence)

Left:
● Solid 

  (all coincidences)
● Dashed 
(background)

Right:
● Backgound 
subtracted

-t angular correlation

● B (4.033 MeV) = 2.9 ± 2.1 x 10-4

● Compatible with previous upper limits
● Very low statistics (6 t- on 20 background) 

with B compatible with 0 at the 2 level

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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Experimental method Transfer
reaction

-particle 
partial width

Transfer reactions are a privileged tool to determine partial widths

● -particle transfer reaction commonly use (7Li,t) reactions [7Li =  + t] 

● Inverse kinematics since 15O is radioactive [not possible to produce targets]

● Comparison between experimental and theoretical differential cross-section

● -particle partial width: 

15O

7Li

 + 15O = 19Ne

t

Theoretical calculation
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Experimental set-up

15O @ 4.7 MeV/u
● ~ 2x107 pps
● SPIRAL1 beam
● 15N contaminant < 0.5 %

7LiF target
1.25 mg/cm2

+ natC 20 g/cm2

M
U

S
T2

MUST2
● DSSSD 300 m + CsI
● 128+128 strips (10x10 cm2)

A
G

ATA

AGATA @ 18 cm
● 37 crystals
● (1 MeV) ~ 8% 

w/ add-back

VAMOS

VAMOS @ 0°
●  ± 7°
● B ± 10% (~)

19Ne

MUGAST
● DSSSD 500 m
● Trapezoid (x5), 

annular (x1), 
square (x2)

● 128+128 strips

M
UG

A
ST

3 H

7Li(15O,t)19Ne* →  + 19Ne
g.s.

Transfer
reaction

-particle 
partial width

J. Sanchez Rojo (2022 PhD)
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Particle identification

(VAMOS)

Light ejectiles (MUGAST)

● VAMOS spectrometer (recoils)
● Good selectivity of recoils: A, Z, Q
● 19Ne well identified
● Crucial for background rejection

● MUGAST (light ejectiles)
● Identification of tritons
● Crucial for angular distribution

● AGATA (-rays)
● Very good selectivity
● High energy resolution (after Doppler correction)

→ FWHM 10 keV (@ 1 MeV); 40 keV (@ 4 MeV)

-rays (AGATA)

Transfer
reaction

-particle 
partial width

J. Sanchez Rojo (2022 PhD)
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19Ne – t –  triple coincidences
Conditions

● Gate on 19Ne9+

● -ray multiplicity = 1

Source of background
● Compton events from high-energy -ray lines
● Small leaking of 20Ne in PID

4.
03

3 
M

eV

4.
1

40
 M

e
V

4.
1

97
 M

eV

Case of the 4.033 MeV state
●

● NOT compatible with zero (unlike previous work)

Transfer
reaction

-particle 
partial width

J. Sanchez Rojo (2022 PhD)
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Angular distributions and reaction rate

E
x
 = 1536 keV (3/2+; ℓ = 1)

E
x
 = 4033 keV (3/2+; ℓ = 1)

N = 3 events

N = 18 events

Selection of angular distributions 15O(,)19Ne reaction rate

P
re

se
n

t 
/ T

a
n

 e
t 

a
l.

● Reaction rate significantly smaller than previous evaluation

→ factor 2 to 4
● Evaluation of a meaningful statistical uncertainty

→ factor 2 to 3 (1 sigma)
● Impact on X-ray bursts explosion in progress...

Transfer
reaction

-particle 
partial width

J. Sanchez Rojo (2022 PhD)
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Summary

● Classical novae and type I X-ray bursts are fascinating objects
● Classical novae: thermonuclear rates of few reactions still needed (but very difficult!)

→ close to valley of stability → stable + radioactive beams
● Type I X-ray bursts: a few tens of (,p) + (p,) reactions to study

→ relatively far from the valley of stability → mostly radioactive beams

● 18F(p,)15O and 15O(,)19Ne
● Same nucleus can be important for different reactions (compound 19Ne), but different 

states are involved (different temperatures in astrophysical sites)
● For a single reaction, several experimental methods and techniques (direct 

measurement, transfer reactions, charge exchange reactions, branching ratios, 
lifetime measurement...) are needed with a wide variety of detectors (magnetic 
spectrometer, charged particles and -ray detectors…) using stable and radioactive 
ion beams

● Don’t forget to look at the miror nucleus (if possible)!
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