Experimental determination of reaction rates in Classical Novae and X-ray bursts

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr) Laboratoire de Physique des 2 Infinis Irène Joliot Curie Université Paris Saclay

UNIVERSITE PARIS-SACLAY

August 29th – September 3rd

Nuclear Physics in Astrophysics X School

Outline

- 1. Explosive hydrogen burning
 - a) Classical novae
 - b) X-ray bursts
- 2. Thermonuclear reaction rates
- **3**. Classical novae: the ¹⁸F(p,α)¹⁵O case
- **4**. X-ray bursts: the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ case

Outline

- 1. Explosive hydrogen burning
 - a) Classical novae
 - b) X-ray bursts
- 2. Thermonuclear reaction rates
- **3**. Classical novae: the ¹⁸ $F(p,\alpha)^{15}O$ case
- **4**. X-ray bursts: the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ case

Explosive hydrogen burning in binary systems

Thermonuclear runaways in the white dwarf/neutron star component of close binary systems

Classical novae outbursts

- Moderate rise times: < 1 2 days
- $L_{peak} \sim 10^4 L_{\odot}$
- Recurence time: $\sim 10^4 10^5$ yr
- Frequency: 30 ± 10 yr⁻¹
- Mass ejected: $10^{-5} 10^{-4} M_{\odot}$

 $(10^2 - 10^3 \text{ km.s}^{-1})$

Classical novae explosions

Final evolution of a close binary system

	novae	ccSN
$M_{ej} (M_{o})$	~ 10 ⁻⁵	~ 10
f (yr-1 galaxy-1)	~ 30	~ 10 ⁻²
$L(L_{o})$	~ 10 ⁵	~ 1011
Nucleosynthesis	¹³ C, ¹⁵ N, ¹⁷ O	"~ all"

Classical novae mechanism

- Accretion of H-rich material at the surface of a white dwarf (WD) from its companion star
- Ignition of the combustion at the base of the envelope in degenerated conditions
- Thermonuclear runaway in convective envelope (*T_{peak}* ~ 100 – 400 MK)
- Expansion and shell ejection
- Mechanism well established but:
 - \rightarrow ejected mass < observed mass
 - $\rightarrow\,$ mixing between accreted and WD material

Classical novae types

- ${}^{12}C^{16}O \text{ and } {}^{16}O^{20}Ne (M_{WD} < 1.35 M_{\odot})$
- Different properties (nucleosynthesis...)

Nuclear network and uncertainties

- Main nuclear path close to the valley of stability, and driven by (p,γ), (p,α) and β+ interactions
 - \rightarrow ~ 100 nuclides
 - \rightarrow ~ 180 reactions
- End point of nucleosynthesis: Ca
- Sensitivity studies allow to identify key reactions
- First stellar explosions for which all reaction rates will soon be based on experimental information

directly in the nova Gamow window. The remaining uncertainties for nova nucleosynthesis involve only a handful of reaction rates, particularly ${}^{18}F(p,\alpha)$, ${}^{25}Al(p,\gamma)$ and ${}^{30}P(p,\gamma)$, for which several experiments are being conducted (or have been proposed) at different facilities

Nuclear Physics in Astrophysics X School

J. José (2007)

¹⁸F – 511 keV line prediction – ¹⁸F(p, α)¹⁵O

ONe nova: 1.15 / 1.25 M_{\odot} (solid/dashed)

Predicted γ -ray flux directly depends on the ¹⁸F(p, α)¹⁵O reaction

Type I X-ray bursts light curves

Recurrent thermonuclear flashes [e.g. 4U/MXB 1820-30]

Understand the luminosity profile: one of the most important challenge

- Sensitive to NS spin frequency (oscillations in rise part of light curve)
 - → link to 2D flame propagation + NS properties (M, R) S. Bhattacharyya+ (2007) J. Nattila+ (2017)
- Sensitive to nuclear network
 - \rightarrow composition of burst ashes (superburst) + burst ejecta (?)

But...

- Very sensitive to nuclear input
- Nuclear physics inputs primarily based on theoretical models

August 29th – September 3rd

Nuclear Physics in Astrophysics X School

Precision X-ray observations

Nuclear network and uncertainties

I (53)

Sb (51)

Sn (50) In (49)

Cd (48)

- Main nuclear path far from the valley of stability
 - \rightarrow ~ 300 500 relevant nuclides
 - \rightarrow several thousands reactions

Nuclear Physics inputs

- Mass measurements along *rp*-process path ٠
- Key reactions

. . .

Sensitivity studies

Only a few tens of key reactions are important

Nuclear Physics in Astrophysics X School

August 29th – September 3rd

Role and impact of ${}^{15}O(\alpha,\gamma){}^{19}Ne$

¹⁵O(α,γ)¹⁹Ne provides a way to break out from hot CNO cycle

 $^{15}O(\alpha,\gamma)^{19}Ne$ affects the onset and shape of the burst light curve

Outline

- 1. Explosive hydrogen burning
 - a) Classical novae
 - b) X-ray bursts
- 2. Thermonuclear reaction rates
- **3**. Classical novae: the ¹⁸F(p,α)¹⁵O case
- **4**. X-ray bursts: the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ case

Reaction rate

• The reaction rate is the number of reactions $1 + 2 \rightarrow 3 + 4$ [notation: 1(2,3)4] per unit volume and time:

$$r_{123} = \frac{dN_{12}}{dt} = \frac{N_1 N_2}{1 + \delta_{12}} \int_0^\infty \sigma_{123}(v) v \phi(v) dv \equiv \frac{N_1 N_2}{1 + \delta_{12}} \left\langle \sigma v \right\rangle_{123}$$

where N_i is the density of particle *i* (cm⁻³), $\sigma_{123}(v)$ the cross-section (probability that the nuclear reaction occur), $\varphi(v)dv$ the probability for the relative speed between 1 and 2 to be in the range [v,v+dv], and $\langle \sigma v \rangle_{123}$ is the reaction rate per particle pair (cm³ s⁻¹).

 $1+\delta_{12} = 2$ if $1 \equiv 2$, otherwise each pair would be counted twice.

 \Rightarrow in practice $N_A < \sigma v >$ in cm³ mol⁻¹ s⁻¹ is tabulated in litterature

Thermonuclear reaction rates

• In a stellar plasma, the kinetic energy of nuclei is given by the thermal agitation velocity \Rightarrow thermonuclear reaction rate

• For a non-degenerate perfect gas, the velocity is given by the Maxwell-Boltzmann distribution:

$$\phi(v)dv = \left(\frac{\mu}{2\pi kT}\right)^{3/2} \exp\left(-\frac{\mu v^2}{2kT}\right) 4\pi v^2 dv$$

• One obtains for the reaction rate per particle pair (in cm³ s⁻¹) as a function of energy:

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E) E e^{-E/kT} dE$$

The astrophysical S-factor

- (sometimes) S(E) is a smoothly varying function
- Most of the cases, extrapolation to astrophysical energies needed!

S(E): astrophysical S-factor which contains all the nuclear effects for a given reaction

August 29th – September 3rd

Gamow peak & non-resonant case

Reaction rate: $\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E) E e^{-E/kT} dE$

If the S-factor is smoothly varying ("non-resonant"):

$$S(E) = \sigma(E) E e^{2\pi\eta} \cong S_0$$

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} S_0 \int_0^\infty e^{-2\pi \eta} e^{-E/kT} dE$$

Gamow peak is the energy range where most reactions between 1 and 2 occur

Approximation by a Gaussian curve:

$$\exp(-2\pi\eta - E/kT) = I_{max} \exp\left[-\left(\frac{E - E_0}{\Delta/2}\right)\right]$$

$$E_0 = \pi k T \eta(E_0) = 1.22 \left(Z_1^2 Z_2^2 \mu_{amu} T_6^2 \right)^{1/3} \text{ keV}$$
$$\Delta = 4\sqrt{E_0 k T/3} = 0.749 \left(Z_1^2 Z_2^2 \mu_{amu} T_6^5 \right)^{1/6} \text{ keV}$$

[Δ : total width at 1/e; $T_6 \equiv T$ (MK)] August 29th – September 3rd

Nuclear Physics in Astrophysics X School

$${}^{12}C(\alpha,\gamma)^{16}O, T = 0.2 \text{ GK}$$
(stin que to the second se

The narrow resonance case

 Contribution to the reaction rate of a resonance at the energy E_R close to E₀:

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu\pi}} \frac{1}{\left(kT\right)^{3/2}} \int_0^\infty \sigma_{BW}(E) E e^{-E/kT} dE$$

with
$$\sigma_{BW}(E) = \pi^2 \omega \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}$$

For a narrow resonance: Maxwell-boltzmann distribution ~ constant

$$\left\langle \sigma v \right\rangle_{123} = \sqrt{\frac{8}{\mu\pi}} \frac{E_R e^{-E_R/kT}}{\left(kT\right)^{3/2}} \int_0^\infty \sigma_{BW}(E) dE$$

• If the partial widths (Γ_i) are constants over $\Gamma \leq E_R$:

$$\left\langle \sigma v \right\rangle_{123} = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 \,\, \omega \gamma \,\, e^{-E_R/kT}$$

$$\omega \gamma = \omega \frac{\Gamma_a \Gamma_b}{\Gamma} \quad \text{is the resonance strength} \quad \left[\omega = \frac{2J_R + 1}{(2J_a + 1)(2J_A + 1)} \right]$$

Reaction $a + A \rightarrow C \rightarrow b + B$

ER

ENERGY E

Experimental strategy

Cross section Astrophysical S-factor $\sigma(E) = \frac{1}{E} S(E) \exp\left(-2\pi\eta\right)$ $S(E) = E \sigma(E) \exp(2\pi\eta)$ S(E) extrapolation direct measurement $\sigma(E)$ LINEAR resonance SCALE, low-energy tail LOG of broad **SCALE** resonance non-resonant sub-threshold non resonant direct measurements capture resonance $-\mathbf{E}_{\mathbf{r}} \mathbf{0} \mathbf{E}_{\mathbf{r}}$ interaction energy E E_{coul} E Coulomb extrapolation Problems with EXTRAPOLATION ! barrier needed !

- Measurement of cross section at higher energies and extrapolation to astrophysical energies E₀
 - → direct measurement approach
- Determination of resonant state properties (E_R , partial widths Γ_i , J^{π})
 - → indirect measurement approach

August 29th – September 3rd

Direct measurements: requirements and challenges

Low cross section \rightarrow low yields \rightarrow poor signal-to-noise ratio

Sources of background

- Beam induced
 - Reactions with impurities in the target
 - Reactions on beam collimators/apertures
- Non beam-induced
 - Interaction from cosmic muons with detection setup
 - Charged particles / γ-rays from natural background
 - Neutron induced reactions

Requirements & challenges \rightarrow Improving signal-to-noise ratio

- Improving signal
 - Very long measurements (weeks, months...)
 - High beam intensities: heating effects on target (limitation)
 - Thicker targets (?): exponential drop of the cross section
 - High detection efficiency
- Reducing noise/background
 - Ultra pure targets: difficult
 - Dedicated experimental setup

- Coincidence measurements (STELLA...)
- Recoil mass separator (DRAGON...)
- Underground laboratory (LUNA, Felsenkeller...)

see lecture from C. Bruno on Saturday

Indirect measurements

Cross-section of astrophysical interest not measured directly

see lecture from A. Spyrou on Friday

Main idea:

- Perform experiments above the Coulomb barrier at high energy (~ few 10's of MeV/u)
 - \rightarrow higher cross sections than for direct measurements

Pros and Cons:

- Experimental conditions are relatively less constraining than for direct measurement (not necessarily true with RIB studies)
- Results are model dependent
- Results depend on the uncertainties relative to the different model parameters
- Examples of indirect methods:
 - **Transfer reactions**, Asymptotic Normalization Coefficient (ANC) method, Trojan Horse Method (THM), surrogate method, Coulomb dissociation...

Outline

- 1. Explosive hydrogen burning
 - a) Classical novae
 - b) X-ray bursts
- 2. Thermonuclear reaction rates
- **3**. Classical novae: the ¹⁸F(p,α)¹⁵O case
- **4**. X-ray bursts: the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ case

¹⁹Ne and ¹⁹F spectroscopy

Useful information:

- ${}^{18}\text{F} + p \rightarrow {}^{19}\text{Ne} \rightarrow \alpha + {}^{15}\text{O}$ (1+) (1/2+) (0+) (1/2-)
- Compound nucleus: ¹⁹Ne
- $\ell_{p} = 0$ resonances: $J^{\pi} = 1/2^{+}, 3/2^{+}$
- $S_p = 6.410 \text{ MeV}; S_a = 3.528 \text{ MeV}$

Gamow window:

- $T_g = 0.1 \rightarrow E_o = 112 \text{ keV}; \Delta = 72 \text{ keV}$
- $T_g = 0.4 \rightarrow E_o = 282 \text{ keV}; \Delta = 228 \text{ keV}$
- Center of mass: [76 keV; 396 keV]
- ¹⁹Ne excitation energy: [6.486 MeV; 6.638 MeV]

Mirror nuclei: ¹⁹Ne ↔ ¹⁹F

• Swapped number of protons and neutrons

Analog states:

• Similar properties $(J^{\pi}, \Gamma_i ...)$

status beginning of 2000

¹⁸F(p,α)¹⁵O astrophysical S-factor

Main questions:

- Existence of close to threshold 3/2⁺? How many? Properties?
- Interference effect between 3/2⁺ states?
- Existence of sub-threshold 1/2⁺ state?
- Interference between 1/2⁺ states?

What to measure?

• $\omega \gamma = \omega \frac{\Gamma_p \Gamma_\alpha}{\Gamma}$

- Low-lying resonances: $\Gamma_p \ll \Gamma \Longrightarrow \omega \gamma \approx \omega \Gamma_p$
- Interferences → direct measurement

status beginning of 2000

August 29th – September 3rd

Experimental method

- ¹⁸F + p: direct measurement impossible!
 - $E_{R} = 40 \text{ keV} << B_{C} = 2.6 \text{ MeV}$
 - $\omega \gamma < 10^{-11} \text{ eV} << \omega \gamma (330 \text{ keV}) = 1.48 \text{ eV}$
- Rely on information concerning analog levels in ¹⁹F (3/2⁺ states separated by 30 keV) s. Utku+ (1998)
- Neutron transfer reaction:
 d(¹⁸F,p)¹⁹F*
- DWBA (Distorted Wave Born Approximation) analysis:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = C^2 S \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$
 and $\Gamma_p = C^2 S \times \Gamma_{s.p.}$

- $S_{n,p}$: spectrosopic factor
- C: isospin factor (= 1 here)
- $\Gamma_{\rm s.p.} : \quad \text{single-particle width (calculation)}$

Low-energy $\ell_p = 0$ resonances Transfer reactions in a nutshell

Transfer reaction

Example of the ¹⁸F(d,p)¹⁹F transfer reaction

DWBA: Distorted Wave Born Approximation

• The simplest theoretical model to describe a transfer reaction

DWBA main assumptions

- The transferred nucleon/cluster is directly deposited on its orbital
 - \rightarrow no nucleon rearrangment in the final nucleus (¹⁹F)
- The entrance and exit channels are dominated by elastic scattering \rightarrow Distorted Wave
- The transfer process is weak enough to be treated as a first order perturbation \rightarrow Born Approximation

Experimental setup

Transfer reaction

N. de Séréville+ (2007)

LEDA & LAMP detectors Davinson+ (2000)

- Single sided Silicon detectors
- Sectors with 16 annular strips
- Energy resolution ~ 30 keV (FWHM)

LEDA – LAMP in coincidences

- Protons at forward angles in the c.o.m
- ¹⁵N at forward angles in the laboratory

Detector positioning

- LAMP: solid angle
- LEDA: coincidence efficincy (20%)

Target thickness (CD₂ = 100 μ g/cm²)

• Compromise between energy resolution and counting rate

$\begin{array}{c} \text{Low-energy } \ell_{p} = 0 \\ \text{resonances} \end{array} \quad \text{Identification of } 3/2^{+} \text{ states in } {}^{19}\text{F} \qquad \begin{array}{c} \text{Transfer} \\ \text{reaction} \end{array}$

N. de Séréville+ (2007)

Different slopes indicate different 2-body reactions

Reconstructed excitation energy

- Conservation of energy and momentum
- Known beam energy + (E_p, θ_p)
 - \rightarrow calculation of excitation energy

(FWHM \approx 100 keV)

Angular distribution + DWBA

- Direct mechanism $\rightarrow \ell_p = 0$
- $C^2 S_p = 0.21$
- Importance of 3/2⁺ states

Experimental conditions

- ³He beam @ 25 MeV, 200 enA
- Targets CaF₂ (50 μ g/cm²) + ¹²C (7 μ g/cm²)
- 7 detection angles between $\Theta_{lab} = 10^{\circ}$ and 50° ٠
- ~14 keV resolution (FWHM)

August 29th – September 3rd

Nuclear Physics in Astrophysics X School

Particle Identification

³H $\Delta E(ADC)$

Where are the $3/2^+$ states?

Charge exchange reaction

A. M. Laird+ (2013) A. Parikh+ (2015)

- **Triplet of states** just above the p+18F threshold [instead of doublet]
- Very different angular distributions
 - \rightarrow different spin/parity
- DWBA analysis not "straightforward"
 - \rightarrow 2 steps (³He,d)(d,t)

60

- \rightarrow assumes information on intermediate states in ²⁰Ne
 - Compare angular • distribution with known 3/2⁺ state

Improving on energy resolution

Charge exchange reaction

M. R. Hall+ (2019)

GODDESS

${}^{19}F({}^{3}He,t){}^{19}Ne^{(\gamma)}{}^{19}Ne_{q.s.} @ 30 MeV, 2.5 pnA, CaF2 (~1 mg/cm²)$

- Use of efficient γ -ray array \rightarrow compact geometry
 - → GAMMASPHERE (92 HPGe + BGO shield)
- Need to tag the reaction channel → triton detection
 - → **ORRUBA** (silicon array)
 - SX3/BB10 barrel of resistive strip detectors
 - QQQ5 endcaps with striped detectors

BB10 / SX3 (65 μ m + 1 mm)

QQQ5 (100 μm + 1 mm)

E1 Energy (MeV)

GAMMASPHERE

Low-energy $\ell_p = 0$ resonances

Indication of 3/2⁺ states in ¹⁹Ne?

Charge exchange reaction

M. R. Hall+ (2019)

- Found γ-rays for two potential 3/2⁺ states in ¹⁹Ne
- Based on similar γ-ray decays for these 2 states as for 3/2⁺ state γ-ray decays in mirror nucleus ¹⁹F

Interference sign of 3/2⁺ states Interferences between 3/2⁺ states

Direct measurement

- Interferences between the E_R = 38 keV and 665 keV resonances
 → α-particle width is varied from Γ_α = 0.86 keV to 21.5 keV
- Destructive cases have strongest impact in Gamow window
- Existing data does not allow to discriminate between different cases
 D. Bardayan+ (2002)
 - \rightarrow direct measurements are needed

of 3/2⁺ states Direct measurement ¹H(¹⁸F,α)¹⁵O

C. E. Beer+ (2011)

Direct

Experimental setup

→ coincident measurement

- Beam: ¹⁸F (5×10^6 pps) produced at ISAC (Isotope Separator & Accelerator; TRIUMF; Canada) by bombarding a thick target with 500 MeV proton (up to 100 μ A)
- Target: 33 μg/cm² CH₂
- Charged particle detectors
 - TUDA $\rightarrow \alpha$ -particles
 - S2 \rightarrow ¹⁵O

TUDA detectors

August 29th – September 3rd

Nuclear Physics in Astrophysics A school

Constructive or destructive?

Interference sign of 3/2⁺ states

Direct measurement

C. E. Beer+ (2011)

E(LEDA; α) v.s. E(S2; heavy)

Improved statistics still needed to determine the sign of interference

$\rightarrow\,$ new experiment being setting up @ TRIUMF

A. M. Laird+

Nuclear Physics in Astrophysics X School

Outline

- 1. Explosive hydrogen burning
 - a) Classical novae
 - b) X-ray bursts
- 2. Thermonuclear reaction rates
- **3**. Classical novae: the ¹⁸F(p,α)¹⁵O case
- **4**. X-ray bursts: the ${}^{15}O(\alpha,\gamma){}^{19}Ne$ case

¹⁹Ne and ¹⁹F spectroscopy

Useful information:

- ${}^{15}O + \alpha \rightarrow {}^{19}Ne + \gamma$ (1/2-) (0+)
- Compound nucleus: ¹⁹Ne
- $\ell_{\alpha} = 0$ resonances: $J = 1/2^{-1}$
- $\ell_{\alpha} = 1$ resonances: $J = 3/2^+$
- $S_{\rho} = 6.410 \text{ MeV}; S_{\alpha} = 3.528 \text{ MeV}$

Gamow window:

- $T_g = 0.4 \rightarrow E_o = 617 \text{ keV}; \Delta = 337 \text{ keV}$
- $T_g = 1 \rightarrow E_o = 1137 \text{ keV}; \Delta = 723 \text{ keV}$
- Center of mass: [450 keV; 1500 keV]
- ¹⁹Ne excitation energy: [3.980 MeV; 5.027 MeV]

Mirror nuclei: ¹⁹Ne ↔ ¹⁹F

Swapped number of protons and neutrons

Analog states:

• Similar properties (J^{π} , Γ_i ...)

What to measure and how?

Thermonuclear reaction rate

Dominant state at E_{y} = 4.033 MeV $(E_p = 505 \text{ keV}; J^{\pi} = 3/2^+; \ell_{\alpha} = 1)$

Narrow resonance case

- $\mathcal{N}_A \langle \sigma v \rangle \propto \omega \gamma \ e^{-E_R/kT}$ $\omega \gamma = 0.5 \times (2J_R + 1) \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma}$
- Close to α -particle threshold (case of E_{ν} = 4.033 MeV state)

$$\rightarrow \frac{\Gamma_{\alpha} \ll \Gamma_{\gamma} \Rightarrow \Gamma = \Gamma_{\alpha} + \Gamma_{\gamma} \approx \Gamma_{\gamma} }{\omega \gamma \approx 0.5 \times (2J_R + 1)\Gamma_{\alpha} }$$

resonance strength proportional to the α -particle width (smaller partial width)

Experimental approaches

- Direct measurement: requires ~ 10¹⁰ pps of low-energy ¹⁵O RIB [not available]
- Indirect approach: $\Gamma_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma} \times \Gamma = B_{\alpha} \times \Gamma$
 - Measurement of α branching ratio B_{α}
 - Measurement of state lifetime $\tau \propto 1/\Gamma$
- Transfer reaction approach: $\Gamma_{\alpha} = C^2 S_{\alpha} \times \Gamma_{\alpha}^{s.p.}$ Measurement of α spectroscopic factor $C^2 S_{\alpha}$

August 29th – September 3rd

Lifetime of the 4.033 MeV state Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state infered from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (v) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

 γ -ray line shape is sensitive to the lifetime of nuclear states

DSAM

Lifetime of the 4.033 MeV state

Lifetime measurement results

R. Kanungo+ (2006)

DSAM

Experimental set-up

Reaction channel identification

³He(²⁰Ne,α)¹⁹Ne* @ 34 MeV [TRIUMF]

- ³He (6x10¹⁷ cm⁻²) implanted in 12.5 μm Au foil
- 2 HPGe at 0° and 90°
- ΔE (25 µm) E (500 µm) silicon detectors telescope
 - → coincidence α - γ measurement

- Wide range of α -particle energy
 - → fusion-evaporation $^{20}Ne + {}^{12}C$ (contaminant)
- Hatched area [$E_{\alpha} = 11 13$ MeV]
 - $\rightarrow \alpha$ -particles corresponding to population of 4.033 MeV state

E_{γ} = 4033 keV line shape

- $\tau = 11^{+4}_{-3} \text{ fs} (1\sigma)$
- Good agreement with existing works:
 - $au = 13^{+9}_{-6} ext{ fs } (1\sigma)$ W. P. Tan+ (2005)
 - $\tau = 6.9^{+1.5}_{-1.5} \pm 0.7 \text{ fs} (1\sigma)$ S. Mythili+ (2008)

Branching ratio How to determine branching ratios 4.033 MeV state

W. P. Tan+ (2007, 2009)

Coincidence

measurement

 α -particle branching ratio $B_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma}$ is the probability for an unbound state to decay through α emission

Experimentally: coincidence measurement

- Detector close to 0° (silicon, spectrometer...) •
 - Detection of particles allowing the identification of the reaction and states of interest (2-body kinematics) ٠ \rightarrow "single" events $N_{singles}$
 - Strong alignment of magnetic substates ٠
- Silicon detector array (stripped) surrounding the target ٠
 - Detection of decaying particles ٠
 - \rightarrow "coincident" events N_{coinc}
 - Angular correlation measurement ٠
 - \rightarrow use to determine the number of decay N_{decays}

Branching ratios
$$B_{\alpha} = \frac{N_{decays}}{N_{singles}}$$

$$B_{\alpha} = \frac{N_{decays}}{N_{singles}}$$

Challenge: low-energy α -particle (< 1 MeV)

Thin target, thin detector dead layer, low electronic threshold

August 29th – September 3rd

Nuclear Physics in Astrophysics X School

Branching ratio 4.033 MeV state

Branching ratio results

Coincidence measurement

W. P. Tan+ (2007, 2009)

130

 $\theta_{c.m.}$ (degree)

 $W(\theta_{c.m.}) = \frac{1}{4\pi} \sum_{k=0}^{k_{max}} a_{2k} P_{2k}(\cos(\theta_{c.m.}))$

150

170

α -particle energy spectrum (α -t coincidence)

with B_{α} compatible with 0 at the 2σ level

August 29th – September 3rd

90

110

Transfer reactions are a privileged tool to determine partial widths

Experimental method

- Ex (MeV) Jπ 4.38 7/2+ a-unbound $(7/2)^{-}$ 4.20 states $(9/2)^{-1}$ 4.14 $3/2^{+}$ 4.03 3.53 $^{15}O + \alpha$ 0^+ ¹⁹Ne
- α -particle transfer reaction commonly use (⁷Li,t) reactions [⁷Li = α + t]
- Inverse kinematics since ¹⁵O is radioactive [not possible to produce targets]

Comparison between experimental and theoretical differential cross-section

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = C^2 S_{\alpha} \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$

• α -particle partial width: $\Gamma_{\alpha} = C^2 S_{\alpha} \times (\Gamma_{\alpha}^{s.p.})$ \longrightarrow Theoretical calculation

Nuclear Physics in Astrophysics X School

Experimental set-up

Transfer reaction

 α -particle

partial width

Particle identification

Transfer reaction

J. Sanchez Rojo (2022 PhD)

- VAMOS spectrometer (recoils)
 - Good selectivity of recoils: A, Z, Q
 - ¹⁹Ne well identified

 α -particle

partial width

- Crucial for background rejection
- MUGAST (light ejectiles)
 - Identification of tritons
 - Crucial for angular distribution
- AGATA (γ-rays)
 - Very good selectivity
 - High energy resolution (after Doppler correction)
 - → FWHM 10 keV (@ 1 MeV); 40 keV (@ 4 MeV)

500

1000

1500

Energy (keV)

2000

2500

3000

α -particle partial width

¹⁹Ne – t – γ triple coincidences

J. Sanchez Rojo (2022 PhD)

Transfer

reaction

Conditions

- Gate on ¹⁹Ne⁹⁺ •
- γ -ray multiplicity = 1

Source of background

- Compton events from high-energy γ -ray lines ٠
- Small leaking of ²⁰Ne in PID •

- $N = 2.2^{+3.7}_{-1.9} (90\% \,\mathrm{CL})$
- NOT compatible with zero (unlike previous work)

^{α-particle} partial width Angular distributions and reaction rate

Transfer reaction

J. Sanchez Rojo (2022 PhD)

Selection of angular distributions

¹⁵O(α,γ)¹⁹Ne reaction rate

- Reaction rate significantly smaller than previous evaluation
 → factor 2 to 4
- Evaluation of a meaningful statistical uncertainty
 - \rightarrow factor 2 to 3 (1 sigma)
- Impact on X-ray bursts explosion in progress...

Summary

- Classical novae and type I X-ray bursts are fascinating objects
 - Classical novae: thermonuclear rates of few reactions still needed (but very difficult!)
 - \rightarrow close to valley of stability \rightarrow stable + radioactive beams
 - Type I X-ray bursts: a few tens of $(\alpha, p) + (p, \gamma)$ reactions to study
 - \rightarrow relatively far from the valley of stability \rightarrow mostly radioactive beams
- ${}^{18}F(p,\alpha){}^{15}O$ and ${}^{15}O(\alpha,\gamma){}^{19}Ne$
 - Same nucleus can be important for different reactions (compound ¹⁹Ne), but different states are involved (different temperatures in astrophysical sites)
 - For a single reaction, several experimental methods and techniques (direct measurement, transfer reactions, charge exchange reactions, branching ratios, lifetime measurement...) are needed with a wide variety of detectors (magnetic spectrometer, charged particles and γ-ray detectors...) using stable and radioactive ion beams
 - Don't forget to look at the miror nucleus (if possible)!

Bibliography

- Nuclear astrophysics
 - Nuclear Physics of Stars, C. Iliadis (2015)
- Classical novae and type I X-ray bursts
 - Stellar Explosions: Hydrodynamics and Nucleosynthesis, J. José (2016)
- Nuclear reaction theory
 - Direct Nuclear Reactions, G. R. Satchler (1983
- Transfer reactions
 - Direct Nuclear Reaction Theories, N. Austern (1970)
 - Transfer reactions as a Tool in Nuclear Astrophysics, F. Hammache and N. de Séréville (2021)
- Angular correlations
 - Gamma-ray angular correlations from aligned nuclei produced by nuclear reactions, A. E. Litherland and J. Ferguson (1961)
 - Angular correlations of sequential particle decay for aligned nuclei, J. G. Pronko and R. A. Lindgren (1972)