
openPMD
Brief Overview
Franz Poeschel | Alexander Debus | Axel Huebl
CASUS | HZDR| LNBL

1

Online NFDI NeXus Workshop
March 17-18, 2022

openPMD – a F.A.I.R. standard for physics data at the Exascale

Self-describing, data format agnostic standard
for frictionless exchange of particle-mesh data
Flagship implementation: openPMD-api:
● Describe particle-mesh data in a unified way
● API in C++ and Python (upcoming: Julia)
● Flexibly store to / read from interchangeable

backends:
● ADIOS1/2
● HDF5
● JSON (serial only)

openPMD – open stack for scientific I/O

openPMD hierarchy

● Structure for series & snapshots

● Records for physical observables

● Attributes: conversion, description

● n-dimensional mesh data:
e.g. n-dimensional images

● Particle data:
e.g. data reduction via particle
representation of image data

● Constants, mixed precision,
complex numbers

Getting your feet wet: JSON backend

● Part of the package: No
need to install 3rd-party
dependencies

● Useful for debugging and
prototyping

● Serial usage only

● Courtesy to Nils
Lohmann‘s JSON library
for C++

openPMD – a dataset in ADIOS2
 float /data/43/particles/electrons\
 /particlePatches/extent/x {2}
 float /data/…/particlePatches/extent/y {2}
 uint64_t /data/…/particlePatches/numParticles {2}
 uint64_t /data/…/particlePatches/numParticlesOffset {2}
 float /data/…/particlePatches/offset/x {2}
 float /data/…/particlePatches/offset/y {2}
 float /data/…/position/x {123}
 float /data/…/position/y {123}
 uint64_t /data/…/positionOffset/x {123}
 uint64_t /data/…/positionOffset/y {123}

 string /basePath attr = "/data/%T/"
 double /data/43/dt attr = 1
 double /data/…/particlePatches/extent/unitDimension attr = {0, 0, 0, 0, 0, 0, 0}
 double /data/…/particlePatches/extent/x/unitSI attr = 1
 double /data/…/particlePatches/extent/y/unitSI attr = 1
 double /data/…/particlePatches/numParticles/unitSI attr = 1
 double /data/…/particlePatches/numParticlesOffset/unitSI attr = 1
 double /data/…/particlePatches/offset/unitDimension attr = {0, 0, 0, 0, 0, 0, 0}
 double /data/…/particlePatches/offset/x/unitSI attr = 1
 double /data/…/particlePatches/offset/y/unitSI attr = 1
 float /data/…/position/timeOffset attr = 0
 double /data/…/position/unitDimension attr = {1, 0, 0, 0, 0, 0, 0}
 double /data/…/position/x/unitSI attr = 1
 double /data/…/position/y/unitSI attr = 1
 float /data/…/positionOffset/timeOffset attr = 0
 double /data/…/positionOffset/unitDimension attr = {1, 0, 0, 0, 0, 0, 0}
 double /data/…/positionOffset/x/unitSI attr = 1
 double /data/…/positionOffset/y/unitSI attr = 1
 …

Attributes
for self-descriptiveness

n-dim. datasets
for heavyweight data

Hierarchical
data organization

Our requirements to a modern scientific I/O stack

Efficiency:
Scalable performance

in preparation for the Exascale era
provided by optimized backends

Expressiveness:
Express scientific data naturally

within the problem’s domain
Avoid dealing with low-level concepts

FAIR compliance

Our requirements to a modern scientific I/O stack

Flexibility: Migrate between systems and setups without changing I/O logic
Specify backends, compression, aggregation, chunking, … at runtime

Streaming IO: Easy transition from file-based to streaming workflows

data description I/O backend configuration
independent

from each other

9

IO flexibility matters for scaling

 9

25 min

1 min

A. Huebl et al., "On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective", In: Lect. Notes Comput. Sci. 10524.4, pp.15-20 (2017)

● IO requires special attention to stay
performant at extreme scale

● ADIOS optimizes for this

● openPMD:
describe data once,
use either backend

Throughput scaling on Titan

10

Streaming matters for scaling

Disk-based benchmarks (yellow, green):
Limit of the filesystem (2.5TiB/s) reached after
a fraction of the system size

Streaming IO (blue):
Provides scalability beyond what the
filesystem can give us

openPMD-api:
Pick IO strategy without recompiling
Close IO gap by seamlessly transitioning from
disk IO to streaming IO

throughput scaling on Summit
benchmarks at 1024 nodes done after Summit system upgrade

IO gap

11

openPMD powered Projects and Users

Documents:
● openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition
A Huebl et al., doi: 10.5281/zenodo.33624

Scientific Simulations:
● PIConGPU (HZDR)

electro-dynamic particle-in-cell code
maintainers: S Bastrakov, A Debus, A Huebl et al.

● WarpX (LBNL, LLNL)
electro-dynamic/static particle-in-cell code
maintainers: JL Vay, D Grote, R Lehe et al.

● FBPIC (LBNL, DESY)
spectral, fourier-bessel particle-in-cell code
maintainers: R Lehe, M Kirchen et al.

● SIMEX Platform (EUCALL, European XFEL)
simulation of advanced photon experiments
maintainer: C Fortmann-Grote

● …and more

Data processing and visualization:
● openPMD-viewer (LBNL, DESY)

high-level python API & interactive jupyter notebook GUI
maintainer: R Lehe

● Paraview (Kitware + third party)
multi-platform data analysis and visualization application
maintainers: Kitware

● VisualPIC (DESY)
post-processing and visualization for particle-in-cell data
maintainer: A Ferran Pousa

● postpic (IOQ Jena)
post-processing and visualization for particle-in-cell data
maintainer: S Kuschel

● yt project (third party + HZDR: reader implementation)
framework for parallel analysis and visualization
maintainer: the yt team (HZDR: contribution)

● VisIt (LLNL)
parallel post-processing and 3D visualization
maintainer: LLNL (NERSC: contribution)

12

openPMD powered Projects and Users

Documents:
● openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition
A Huebl et al., doi: 10.5281/zenodo.33624

Libraries and language bindings:
● pyDive (HZDR)

parallel numpy for ipython notebook
maintainer: H Burau

● libsplash (HZDR, TU Dresden)
high-level C++ HDF5 library for mesh and particle records
maintainers: F Schmitt, A Huebl

● openPMD-api (HZDR)
reference API for openPMD data handling
maintainers: A Huebl, J Gu, F Poeschel et al.

Tools and converters:
● file validators (HZDR, LBNL)

development scripts
maintainer: A Huebl, R Lehe

● XDMF creation (TU Dresden, HZDR)
xml meta file creation for (serial) reading in VTK
maintainer: HZDR

● HDF Compass (third party + HZDR: ADIOS
implementation)
viewer for HDF5 files and related formats
maintainer: HDF Group (HZDR: contribution)

● VisIt (LLNL)
parallel post-processing and 3D visualization
maintainer: LLNL (NERSC: contribution)

Exhaustive list:
https://github.com/openPMD/openPMD-projects

Alexander Debus | a.debus@hzdr.de | Mar 17-18, 2022 | Online NFDI NeXus Workshop

openPMD and NeXus – potential for joining forces

 openPMD is backend agnostic,

suitable for any kind of hierarchical, self-describing data format, such as,

but not limited to HDF5, ADIOS2, JSON…

 openPMD is exascale-ready as data volumes scale to 100s of TBs to PBs,

with granular control over data sources, sinks and aggregators.

 openPMD supports in-memory streaming,

which becomes essential for handling ever growing data rates, allowing for in-situ data

analysis and filtering before data is written to disk.

 openPMD is open source and extensible meta-standard,

featuring a rich ecosystem of tools and APIs.

github.com/openPMD

Alexander Debus | a.debus@hzdr.de | Mar 17-18, 2022 | Online NFDI NeXus Workshop

openPMD and NeXus – potential for joining forces

 Laser-plasma experimental community
 needs to handle large data volumens and rates. Currently single shot ( 100GB per day),

aiming for 10 Hz operation and beyond ( 10TB per day).
 needs to adopt and extend NeXus for its domain.

 The potential of openPMD and NeXus is not in converting between the existing vocabularies
of both standards, but rather to add and extend each others‘ unique capabilities.

NeXus: Rich vocabulary and tools describing experimental data,
openPMD: Backend-agnostic, open, scalable I/O including in-memory streaming support.

For getting started
 openPMD could be integrated into NeXus as a non-breaking change (regarding HDF5),

extending NeXus to be backend-agnostic, while retaining existing HDF5 functionality.
 The NeXus semantics and APIs could be added to the openPMD-project

as an domain-specific extension.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

