
DOOCS
The Distributed
Object-Oriented
Control System

Jan Behrens (DESY-MCS)
Hamburg, 4.9.2025



DESY. Page 2| DOOCS | Jan Behrens, 4.9.2025

Outline

01 Basic concepts

02 Server interfaces

03 Client interfaces

04 Other topics



Basic concepts



DESY. Page 4| DOOCS | Jan Behrens, 4.9.2025

Introduction
DOOCS - The Distributed Object-Oriented Control System

• Versatile software framework for creating accelerator-based control system applications

– e.g. simple temperature monitoring, high-level controls, feedback of beam parameters

• Distributed client-server architecture combined with device-oriented view

• Control system parameters are accessible via network calls

• Transportation layer based on RPC/XDR or ZeroMQ protocol

– RPC: synchronous protocol, robust & efficient data transfer

– ZMQ: independent layer, will replace RPC in the future



DESY. Page 5| DOOCS | Jan Behrens, 4.9.2025

Introduction
DOOCS - The Distributed Object-Oriented Control System

• The DOOCS framework is written in C++

• Freely available under GNU GPL v2.1

• Libraries for client applications in C++, Java, Python, MATLAB, … exist

• Graphical user interface implemented as a lightweight Java application (JDDD)



DESY. Page 6| DOOCS | Jan Behrens, 4.9.2025

Development

• Stable DOOCS release about every 2 months

– Latest release version is v25.7

• Nightly builds for all platforms (DESY internal)

• Package repository for Linux (.deb) and MacOS

• Development on self-hosted GitLab instance

– Heavy use of GitLab features like workflows, code reviews

• Uses Meson build system (only doocs4py uses CMake)

• Unit tests implemented with catch2 framework



DESY. Page 7| DOOCS | Jan Behrens, 4.9.2025

Basic Concepts

• Focus on operating particle accelerator facilities

• Object-oriented design paradigm →  devices & data are objects

• Basic entity is a device → control system hardware or virtual logic

• Server application contains one or more location instances

• Each instance holds the properties of the (hardware/virtual) device 

• Properties are access points to the communication network
→ represent control system parameters

• The naming scheme adheres to a four-string identifier: Facility / Device / Location / Property



Server interfaces



DESY. Page 10| DOOCS | Jan Behrens, 4.9.2025

Server interfaces

• Server core API implemented as C++ library

• Follows a client-server model

• Multi-threaded with update threads, interrupt handlers, … 

• Network communication based on RPC with XDR data model

– Additional interfaces (hardware, protocols) as separate libraries

• ZeroMQ protocol added in v24.1

– Zero-broker message queue library

– Request/Reply pattern → same functionality as RPC

– Publish/Subscribe pattern → distribute data to subscribed clients

Client

Client

Server
get()
set() 

Property

Server

Client

RPC or
Request/Reply

Publish/
Suscribe



DESY. Page 11| DOOCS | Jan Behrens, 4.9.2025

Server interfaces

• Configuration stored in local file, with save & restore functionality

• Locations & properties can be added/removed on-the-fly

• Extended archiving functionality

– Histories stored locally on server, no network required

– Access through regular server API

• Server access authorization 

– Basic access levels via UNIX user + group id lists (per server)

– Fine-grained access control (on property level) via XML file



Client interfaces



DESY. Page 14| DOOCS | Jan Behrens, 4.9.2025

Client interfaces

• Client API library written in C++

• Core features:

– Unified addressing of devices & their properties

– Universal data exchange independent of data type

– Protocol-independent access to devices:
RPC, ZMQ, TINE, EPICS

• DOOCS servers must be registered at dedicated
name server for address resolution

• Some high-level control libraries exist in C++
→ provide commonly used features, similar approach as pyAML



DESY. Page 15| DOOCS | Jan Behrens, 4.9.2025

Client interfaces – C++ API

• EqCall class

– Represents client interface to DOOCS

– get() + set() calls read/write device data on server

– names() call to retrieve list of devices/locations/properties

– Updates (reads) in background loop through get_monitor()

– With ZeroMQ: asynchronous subscribe() / unsubscribe()

• EqAdr class

– Parameter address, allows DOOCS/TINE/EPICS schemes

• EqData class

– Main class to implement all DOOCS data types + getters/setters

– Stores additional info like timestamps, error codes



DESY. Page 16| DOOCS | Jan Behrens, 4.9.2025

Client interfaces – C++ API

• Supported data types:

– Simple scalars:  
BOOL, SHORT, USHORT, INT, UINT, LONG, ULONG, FLOAT, DOUBLE

– Compound scalars: 
IIII (= 4x INT), IFFF (= INT + 3x FLOAT), TTII, USTR, XY, XYZS, 
IMAGE, SPECTRUM, GSPECTRUM

– Scalar arrays:  
A_BOOL, A_SHORT, A_USHORT, A_INT, A_UINT, A_LONG, A_ULONG, 
A_FLOAT, A_DOUBLE, STRING, TEXT, XML

– Compound arrays:  
A_USTR, A_XYZS, A_BYTE, A_XY

– Multi-dimensional arrays:  
MDA_FLOAT, MDA_DOUBLE

– Structured data



DESY. Page 17| DOOCS | Jan Behrens, 4.9.2025

Client interfaces – Python API (doocs4py)

• doocs4py is a new approach to Python 3 bindings

– Older implementation exists with PyDOOCS → not covered here

• API to write clients and servers with a single library

• Attempts to completely wrap the client & server API

• Direct interface to EqCall, EqAdr, EqData classes

• Supports all calls as wrappers to C++ methods:
get() set() names() get_monitor() subscribe()

• Allows to write & run purely-Python server classes



DESY. Page 18| DOOCS | Jan Behrens, 4.9.2025

Special feature: Wildcard in addresses

• DOOCS does not support full async/await mechanism for calls

• However, one can use star operations (wildcards) in addresses:
PETRA/BPM/*/ORBIT

• In this case, all locations/proprties are evaluated on the server side

• Aggregated results are returned to client in a single data transfer

• This only works for get() calls

• Not possible to set() variables at different addresses simultaneously

• Asynchonuous call feature is planned for a future release! Facility / Device / Location / Property

Single device server

a

Server

Client

b
c d

e

f



DESY. Page 19| DOOCS | Jan Behrens, 4.9.2025

Comparison to TANGO and EPICS

• DOOCS implements device servers

• Most DOOCS calls are synchronous

• LDAP name service to locate servers by DOOCS address

• Similar naming scheme to TANGO: Facility / Device / Server / Property

• TANGO uses broker system as name/communication service

• EPICS traditionally uses internal database (IOC)

– Modern Process Variable Access similar to DOOCS

• DOOCS supports direct communication with EPICS servers

• Structured data in DOOCS is compatible with EPICS



DESY. Page 20| DOOCS | Jan Behrens, 4.9.2025

Summary

• DOOCS is a control system framework for accelerators

• Written in C++, interfaces to Python / Java / MATLAB

• Client-server model with devices as main entities

• Device properties reflect control system parameters

• Network communication over RPC+XDR or ZeroMQ

• Most calls are synchronous

• ZeroMQ adds publish/subscribe mechanism

• doocs4py is the new interface for Python 3



Thank you.



DESY. Page 22| DOOCS | Jan Behrens, 4.9.2025

References

● Current and general overview of the accelerator control system as implemented at the European XFEL: 
T. Wilksen et. al., “The control system for the linear accelerator at the European XFEL - Status and first experiences”, in Proc. 16th Int. Conf. on Accelerator and Large Experimental Physics Control 
System (ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 1-5, paper MOAPL01 
http://icalepcs2017.vrws.de/papers/moapl01.pdf 

● Paper on the accelerator data acquisition system as used at the European XFEL: 
T. Wilksen et. al., "A bunch-synchronized data acquisition system for the European XFEL accelerator”, in Proc. 16th Int. Conf. on Accelerator and Large Experimental Physics Control 
System (ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 958-961, paper TUPHA210 
http://accelconf.web.cern.ch/AccelConf/icalepcs2017/papers/tupha210.pdf 

● Paper on high-level controls as implemented at the European XFEL: 
L. Fröhlich et. al., “High level controls for the European XFEL”, in Proc. 15th Int. Conf. on Accelerator and Large Experimental Physics Control System (ICALEPCS’15), Melbourne, Australia, Oct. 
2015, paper MOPGF101 
https://accelconf.web.cern.ch/ICALEPCS2015/papers/mopgf101.pdf

● Paper on virtual XFEL based on the DOOCS DAQ: 
W. Decking et al., “The Virtual European XFEL Accelerator”, in Proc. 15th Int. Conf. on Accelerator and Large Experimental Physics Control System (ICALEPCS’15), Melbourne, Australia, Oct. 
2015, paper TUD3O04. 
https://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/tud3o04.pdf

● Short overview on tools for DAQ data retrieval (slightly out-of-date):  
V.Rybnikov et al.,“FLASH DAQ data management and access tools”, PCaPAC’10, Saskatoon, Canada (2010), pp. 195–197. 
https://accelconf.web.cern.ch/pcapac2010/papers/frcoma02.pdf

● Paper on the implementation of the inner workings of the DOOCS DAQ (slightly out-of-date):  
V. Rybnikov et al., “A Buffer Manager Implementation for the FLASH Data Acquisition System”, PCaPAC 2008, Ljubljana, Slovenia, October 2008  
https://accelconf.web.cern.ch/pc08/papers/tup010.pdf

● Original paper of the overall DAQ concept (slightly out-of-date):  
A. Aghababyan et al., “Multi-Processor Based Fast Data Acquisition for a Free Electron Laser and Experiments”, in IEEE Transactions on Nuclear Science, vol. 55, No. 1, pp. 256-260, February 2008. 
https://ieeexplore.ieee.org/document/4382853

http://icalepcs2017.vrws.de/papers/moapl01.pdf
http://accelconf.web.cern.ch/AccelConf/icalepcs2017/papers/tupha210.pdf
https://accelconf.web.cern.ch/ICALEPCS2015/papers/mopgf101.pdf
https://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/tud3o04.pdf
https://accelconf.web.cern.ch/pcapac2010/papers/frcoma02.pdf
https://accelconf.web.cern.ch/pc08/papers/tup010.pdf
https://ieeexplore.ieee.org/document/4382853

	Presentation Title (2)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

