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Introduction
DOOCS - The Distributed Object-Oriented Control System

• Versatile software framework for creating accelerator-based control system applications

– e.g. simple temperature monitoring, high-level controls, feedback of beam parameters

• Distributed client-server architecture combined with device-oriented view

• Control system parameters are accessible via network calls

• Transportation layer based on RPC/XDR or ZeroMQ protocol

– RPC: synchronous protocol, robust & efficient data transfer

– ZMQ: independent layer, will replace RPC in the future
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Introduction
DOOCS - The Distributed Object-Oriented Control System

• The DOOCS framework is written in C++

• Freely available under GNU GPL v2.1

• Libraries for client applications in C++, Java, Python, MATLAB, … exist

• Graphical user interface implemented as a lightweight Java application (JDDD)
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Development

• Stable DOOCS release about every 2 months

– Latest release version is v25.7

• Nightly builds for all platforms (DESY internal)

• Package repository for Linux (.deb) and MacOS

• Development on self-hosted GitLab instance

– Heavy use of GitLab features like workflows, code reviews

• Uses Meson build system (only doocs4py uses CMake)

• Unit tests implemented with catch2 framework
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Basic Concepts

• Focus on operating particle accelerator facilities

• Object-oriented design paradigm →  devices & data are objects

• Basic entity is a device → control system hardware or virtual logic

• Server application contains one or more location instances

• Each instance holds the properties of the (hardware/virtual) device 

• Properties are access points to the communication network
→ represent control system parameters

• The naming scheme adheres to a four-string identifier: Facility / Device / Location / Property



Server interfaces
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Server interfaces

• Server core API implemented as C++ library

• Follows a client-server model

• Multi-threaded with update threads, interrupt handlers, … 

• Network communication based on RPC with XDR data model

– Additional interfaces (hardware, protocols) as separate libraries

• ZeroMQ protocol added in v24.1

– Zero-broker message queue library

– Request/Reply pattern → same functionality as RPC

– Publish/Subscribe pattern → distribute data to subscribed clients

Client

Client

Server
get()
set() 

Property

Server

Client

RPC or
Request/Reply

Publish/
Suscribe
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Server interfaces

• Configuration stored in local file, with save & restore functionality

• Locations & properties can be added/removed on-the-fly

• Extended archiving functionality

– Histories stored locally on server, no network required

– Access through regular server API

• Server access authorization 

– Basic access levels via UNIX user + group id lists (per server)

– Fine-grained access control (on property level) via XML file



Client interfaces
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Client interfaces

• Client API library written in C++

• Core features:

– Unified addressing of devices & their properties

– Universal data exchange independent of data type

– Protocol-independent access to devices:
RPC, ZMQ, TINE, EPICS

• DOOCS servers must be registered at dedicated
name server for address resolution

• Some high-level control libraries exist in C++
→ provide commonly used features, similar approach as pyAML
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Client interfaces – C++ API

• EqCall class

– Represents client interface to DOOCS

– get() + set() calls read/write device data on server

– names() call to retrieve list of devices/locations/properties

– Updates (reads) in background loop through get_monitor()

– With ZeroMQ: asynchronous subscribe() / unsubscribe()

• EqAdr class

– Parameter address, allows DOOCS/TINE/EPICS schemes

• EqData class

– Main class to implement all DOOCS data types + getters/setters

– Stores additional info like timestamps, error codes
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Client interfaces – C++ API

• Supported data types:

– Simple scalars:  
BOOL, SHORT, USHORT, INT, UINT, LONG, ULONG, FLOAT, DOUBLE

– Compound scalars: 
IIII (= 4x INT), IFFF (= INT + 3x FLOAT), TTII, USTR, XY, XYZS, 
IMAGE, SPECTRUM, GSPECTRUM

– Scalar arrays:  
A_BOOL, A_SHORT, A_USHORT, A_INT, A_UINT, A_LONG, A_ULONG, 
A_FLOAT, A_DOUBLE, STRING, TEXT, XML

– Compound arrays:  
A_USTR, A_XYZS, A_BYTE, A_XY

– Multi-dimensional arrays:  
MDA_FLOAT, MDA_DOUBLE

– Structured data
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Client interfaces – Python API (doocs4py)

• doocs4py is a new approach to Python 3 bindings

– Older implementation exists with PyDOOCS → not covered here

• API to write clients and servers with a single library

• Attempts to completely wrap the client & server API

• Direct interface to EqCall, EqAdr, EqData classes

• Supports all calls as wrappers to C++ methods:
get() set() names() get_monitor() subscribe()

• Allows to write & run purely-Python server classes
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Special feature: Wildcard in addresses

• DOOCS does not support full async/await mechanism for calls

• However, one can use star operations (wildcards) in addresses:
PETRA/BPM/*/ORBIT

• In this case, all locations/proprties are evaluated on the server side

• Aggregated results are returned to client in a single data transfer

• This only works for get() calls

• Not possible to set() variables at different addresses simultaneously

• Asynchonuous call feature is planned for a future release! Facility / Device / Location / Property

Single device server
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Comparison to TANGO and EPICS

• DOOCS implements device servers

• Most DOOCS calls are synchronous

• LDAP name service to locate servers by DOOCS address

• Similar naming scheme to TANGO: Facility / Device / Server / Property

• TANGO uses broker system as name/communication service

• EPICS traditionally uses internal database (IOC)

– Modern Process Variable Access similar to DOOCS

• DOOCS supports direct communication with EPICS servers

• Structured data in DOOCS is compatible with EPICS
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Summary

• DOOCS is a control system framework for accelerators

• Written in C++, interfaces to Python / Java / MATLAB

• Client-server model with devices as main entities

• Device properties reflect control system parameters

• Network communication over RPC+XDR or ZeroMQ

• Most calls are synchronous

• ZeroMQ adds publish/subscribe mechanism

• doocs4py is the new interface for Python 3



Thank you.
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