
Introduction to EPICS

from a user point of view

Fernando Henrique de Sá

fernando.sa@lnls.br

Accelerator Physics Group (FAC)

DAC/LNLS/CNPEM

mailto:fernando.sa@lnls.br

EPICS Basics

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

• Non-hierarchical, “flat”, control system. Based on process variables instead of objects:

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

• Non-hierarchical, “flat”, control system. Based on process variables instead of objects:
• Modular, distributed and scalable: no bottlenecks, very robust and decentralized;

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

• Non-hierarchical, “flat”, control system. Based on process variables instead of objects:
• Modular, distributed and scalable: no bottlenecks, very robust and decentralized;

• Lack of abstraction and atomic actions (at least with version 3);

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

• Non-hierarchical, “flat”, control system. Based on process variables instead of objects:
• Modular, distributed and scalable: no bottlenecks, very robust and decentralized;

• Lack of abstraction and atomic actions (at least with version 3);

• Tool based: minimizes need for customer-specific coding (independent development);

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS Basics

• Non-hierarchical, “flat”, control system. Based on process variables instead of objects:
• Modular, distributed and scalable: no bottlenecks, very robust and decentralized;

• Lack of abstraction and atomic actions (at least with version 3);

• Tool based: minimizes need for customer-specific coding (independent development);

• Written in C++, with support for python and matlab, re-implemented in Java, etc.

CA stands for Channel
Access, the name of the
communication
protocol underlying all
EPICS 3 connections

Connects to a CA server
(input-output controller, or
IOC) and gets the current
value of one record

Name of the property we want to connect. Represents some
process variable (PV) of a given device. These names are
defined by a string (a-z A-Z 0-9 _ - : [] < > ;) and must be
unique across the entire EPICS network. At SIRIUS, we use
naming conventions to improve interpretability.

Value of the process variable. In this case, the DCCT measurement of the electric current of a quadrupole power supply.

The client: environment where
connections requests are issued.

pyAML Community Meeting, September 3rd, 20252/15

EPICS PVs

Each PV has several additional properties:

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

If > 1, PV is an array.

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

Date and time of the last update of this PV

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

Date and time of the last update of this PV

PVs also have read and write access control. For instance,

we cannot write on a PV that only maps the readout of

some property:

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

Date and time of the last update of this PV

PVs also have read and write access control. For instance,

we cannot write on a PV that only maps the readout of

some property:

Command to write on a PV

pyAML Community Meeting, September 3rd, 20253/15

EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

Date and time of the last update of this PV

PVs also have read and write access control. For instance,

we cannot write on a PV that only maps the readout of

some property:

Command to write on a PV Desired setpoint value

pyAML Community Meeting, September 3rd, 20253/15

EPICS Servers

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);

• Combining them in an IOC allows complex logic with very little (conventional) programming

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);

• Combining them in an IOC allows complex logic with very little (conventional) programming

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);

• Combining them in an IOC allows complex logic with very little (conventional) programming
Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);

• Combining them in an IOC allows complex logic with very little (conventional) programming

Server’s IP Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);

• Combining them in an IOC allows complex logic with very little (conventional) programming

Server’s IP

This is an image, but the PV is a 1D array.
Additional info must be provided by other
record for image reconstruction (EPICS 3).

Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);
• Multi-Bit Binary Input/Output: trigger tasks based on up to 16 choices (ENUMS)

• Combining them in an IOC allows complex logic with very little (conventional) programming

Server’s IP

This is an image, but the PV is a 1D array.
Additional info must be provided by other
record for image reconstruction (EPICS 3).

Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);
• Multi-Bit Binary Input/Output: trigger tasks based on up to 16 choices (ENUMS)

• Combining them in an IOC allows complex logic with very little (conventional) programming

Can be set either with the
integer or the string value

Server’s IP

This is an image, but the PV is a 1D array.
Additional info must be provided by other
record for image reconstruction (EPICS 3).

Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);
• Multi-Bit Binary Input/Output: trigger tasks based on up to 16 choices (ENUMS)
• ...

• Combining them in an IOC allows complex logic with very little (conventional) programming

Can be set either with the
integer or the string value

Server’s IP

This is an image, but the PV is a 1D array.
Additional info must be provided by other
record for image reconstruction (EPICS 3).

Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

EPICS Servers
• On the server side, the IOC building blocks are records that are mapped into CA PVs by the server layer;
• There are several types of records, to perform different tasks:

• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);
• Multi-Bit Binary Input/Output: trigger tasks based on up to 16 choices (ENUMS)
• ...

• Each record type have a different set of fields, and different data types (char/int/long, float/double, string)
• Combining them in an IOC allows complex logic with very little (conventional) programming

Can be set either with the
integer or the string value

Server’s IP

This is an image, but the PV is a 1D array.
Additional info must be provided by other
record for image reconstruction (EPICS 3).

Gets general
info of a PV

pyAML Community Meeting, September 3rd, 20254/15

PVs ≠ Records

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

record name

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

record name

field name

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

record name

PV name field name

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

record name

PV name field name

pyAML Community Meeting, September 3rd, 20255/15

PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a
different set of properties.

Have a set of fields, which varies according to the record
type.

Can be used to retrieve information or change state of
the records, triggering different computations, or setting
hardware.

Can be combined to perform complex logic. Can also be
managed via a finite state machine controller
(sequencer) to enhance their computational features.

record name

PV name field name

Each record field is a separate PV with its own properties and read/write access control. “VAL” is the default field.

pyAML Community Meeting, September 3rd, 20255/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP

connections. New channels are added to these circuits.

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP

connections. New channels are added to these circuits.

After the connection is stablished, get and put requests can be
issued. The client can also register that PV to receive
asynchronous updates of new values or alarm states.

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP

connections. New channels are added to these circuits.

After the connection is stablished, get and put requests can be
issued. The client can also register that PV to receive
asynchronous updates of new values or alarm states.

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP

connections. New channels are added to these circuits.

After the connection is stablished, get and put requests can be
issued. The client can also register that PV to receive
asynchronous updates of new values or alarm states.

Creates a connection and register the PV for value updates

pyAML Community Meeting, September 3rd, 20256/15

CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them,

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP

connections. New channels are added to these circuits.

After the connection is stablished, get and put requests can be
issued. The client can also register that PV to receive
asynchronous updates of new values or alarm states.

Creates a connection and register the PV for value updates

New values are sent by the IOC
asynchronously as soon as they
change, without the need for the
client to request update: latency and
network traffic optimization.

pyAML Community Meeting, September 3rd, 20256/15

EPICS Clients: Archiver

Allows storage of hundreds of thousands of PV
with custom sampling rate and storage policies.
The web management interface permits
controlling archive parameters of each PV and
provides general reports.

pyAML Community Meeting, September 3rd, 20257/15

EPICS Clients: Archiver Web Server

https://ais-eng-srv-ta.cnpem.br/retrieval/data/getData.json?pv=SI-01M1:PS-CH:Current-Mon&from=2025-
08-10T00%3A00%3A00-03%3A00&to=2025-08-10T05%3A00%3A00-03%3A00

The web server has a REST API, so it is possible to control the archived PVs directly via urls. For instance, we
can retrieve stored data:

This type of API for url construction can easily be wrapped with some python code:

pyAML Community Meeting, September 3rd, 20258/15

EPICS Clients: Archiver Viewer

Example of monitoring: SIRIUS cavity
warm up and cool down after cryogenic
fault in august 2025.

pyAML Community Meeting, September 3rd, 20259/15

EPICS Clients: PyEpics, caproto, Pvapy…

PyEpics provides full control and monitoring of PVs properties,
including the asynchronous update functionality.

pyAML Community Meeting, September 3rd, 202510/15

EPICS Clients: Graphical User Interfaces

CS-studio:
• Largely used in the

EPICS community;
• Implemented in Java;
• Extensive list of

widgets;
• Heavy use of

threading;
• Drag and drop display

builder;
• Alarms table and

integration with
Logbooks and
Archiver;

• Save and Restore
feature.

pyAML Community Meeting, September 3rd, 202511/15

EPICS Clients: Graphical User Interfaces

PyDM:
• Implemented in Python,

making use of PyQt;
• Easy integration with python

libraries, advanced scripting
and complex interfaces;

• Extensive list of widgets;
• Drag and drop display builder

integrated with QtDesigner;
• EPICS and Archiver plugins;
• Most of SIRIUS GUIs were

made with PyDM.

pyAML Community Meeting, September 3rd, 202512/15

EPICS Clients: Graphical User Interfaces

PyDM:
• Implemented in Python,

making use of PyQt;
• Easy integration with python

libraries, advanced scripting
and complex interfaces;

• Extensive list of widgets;
• Drag and drop display builder

integrated with QtDesigner;
• EPICS and Archiver plugins;
• Most of SIRIUS GUIs were

made with PyDM.

pyAML Community Meeting, September 3rd, 202512/15

EPICS Clients: Graphical User Interfaces

PyDM:
• Implemented in Python,

making use of PyQt;
• Easy integration with python

libraries, advanced scripting
and complex interfaces;

• Extensive list of widgets;
• Drag and drop display builder

integrated with QtDesigner;
• EPICS and Archiver plugins;
• Most of SIRIUS GUIs were

made with PyDM.

pyAML Community Meeting, September 3rd, 202512/15

Python Servers: PCASpy, PythonSoftIOC, …

• PCASpy allows writing EPICS IOCs in python;
• Easy to use. Even users with little knowledge of EPICS (such as myself),

can write their own IOCs;
• Support for most of the PV data types;
• IOC programming must be done in python: no records to embed logic;
• Good option to create IOCs to provide abstraction layers to the control

system (soft IOCs), such as:
• Configurations data;
• Accelerators model data;
• Implementation of measurement scripts;
• Slow orbit correction (performance bottlenecks in traditional IOC);
• PVs translations and unit conversions;
• Hardware abstraction IOCs;
• …

• Most of SIRIUS soft IOCs and all power supplies IOCs were
implemented with PCASpy.

pyAML Community Meeting, September 3rd, 202513/15

References

Getting started with EPICS — EPICS Documentation

EPICS R3.15 Channel Access Reference Manual

Channel Access Protocol Specification

Channel Access

EPICS Archiver Appliance — archiverdocs 0.1 documentation

Epics Channel Access for Python — Epics Channel Access for Python

caproto: a pure-Python Channel Access protocol library — caproto 1.2.0 documentation

Control System Studio

PyDM - Python Display Manager — PyDM 1.27.2 documentation

pythonSoftIOC — pythonSoftIOC 4.5.0+22.g8c4b516 documentation

PCASpy Documentation — pcaspy 0.8.1 documentation

pyAML Community Meeting, September 3rd, 202514/15

https://docs.epics-controls.org/en/latest/getting-started/EPICS_Intro.html
https://docs.epics-controls.org/en/latest/getting-started/EPICS_Intro.html
https://docs.epics-controls.org/en/latest/getting-started/EPICS_Intro.html
https://epics.anl.gov/base/R3-15/9-docs/CAref.html
https://epics.anl.gov/base/R3-15/6-docs/CAproto/index.html
https://epics.anl.gov/docs/CAproto.html
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://epicsarchiver.readthedocs.io/en/latest/
https://pyepics.github.io/pyepics/
https://pyepics.github.io/pyepics/
https://pyepics.github.io/pyepics/
https://caproto.github.io/caproto/v1.2.0/
https://caproto.github.io/caproto/v1.2.0/
https://caproto.github.io/caproto/v1.2.0/
https://caproto.github.io/caproto/v1.2.0/
https://caproto.github.io/caproto/v1.2.0/
https://www.controlsystemstudio.org/
https://www.controlsystemstudio.org/
https://slaclab.github.io/pydm/
https://slaclab.github.io/pydm/
https://slaclab.github.io/pydm/
https://slaclab.github.io/pydm/
https://slaclab.github.io/pydm/
https://slaclab.github.io/pydm/
https://diamondlightsource.github.io/pythonSoftIOC/master/index.html
https://diamondlightsource.github.io/pythonSoftIOC/master/index.html
https://diamondlightsource.github.io/pythonSoftIOC/master/index.html
https://diamondlightsource.github.io/pythonSoftIOC/master/index.html
https://diamondlightsource.github.io/pythonSoftIOC/master/index.html
https://pcaspy.readthedocs.io/en/latest/index.html
https://pcaspy.readthedocs.io/en/latest/index.html
https://pcaspy.readthedocs.io/en/latest/index.html
https://pcaspy.readthedocs.io/en/latest/index.html
https://pcaspy.readthedocs.io/en/latest/index.html
https://pcaspy.readthedocs.io/en/latest/index.html

Thank you for your attention!

Many thanks to Érico Rolim for his valuable feedback on this presentation
and for helping me understand key concepts related to EPICS!

pyAML Community Meeting, September 3rd, 202515/15

	Slide 1: Introduction to EPICS
	Slide 2: EPICS Basics
	Slide 3: EPICS Basics
	Slide 4: EPICS Basics
	Slide 5: EPICS Basics
	Slide 6: EPICS Basics
	Slide 7: EPICS Basics
	Slide 8: EPICS Basics
	Slide 9: EPICS Basics
	Slide 10: EPICS Basics
	Slide 11: EPICS Basics
	Slide 12: EPICS Basics
	Slide 13: EPICS Basics
	Slide 14: EPICS PVs
	Slide 15: EPICS PVs
	Slide 16: EPICS PVs
	Slide 17: EPICS PVs
	Slide 18: EPICS PVs
	Slide 19: EPICS PVs
	Slide 20: EPICS PVs
	Slide 21: EPICS PVs
	Slide 22: EPICS PVs
	Slide 23: EPICS PVs
	Slide 24: EPICS Servers
	Slide 25: EPICS Servers
	Slide 26: EPICS Servers
	Slide 27: EPICS Servers
	Slide 28: EPICS Servers
	Slide 29: EPICS Servers
	Slide 30: EPICS Servers
	Slide 31: EPICS Servers
	Slide 32: EPICS Servers
	Slide 33: EPICS Servers
	Slide 34: EPICS Servers
	Slide 35: EPICS Servers
	Slide 36: EPICS Servers
	Slide 37: PVs não é igual a Records
	Slide 38: PVs não é igual a Records
	Slide 39: PVs não é igual a Records
	Slide 40: PVs não é igual a Records
	Slide 41: PVs não é igual a Records
	Slide 42: PVs não é igual a Records
	Slide 43: PVs não é igual a Records
	Slide 44: PVs não é igual a Records
	Slide 45: CA (and pvAccess) Basics
	Slide 46: CA (and pvAccess) Basics
	Slide 47: CA (and pvAccess) Basics
	Slide 48: CA (and pvAccess) Basics
	Slide 49: CA (and pvAccess) Basics
	Slide 50: CA (and pvAccess) Basics
	Slide 51: CA (and pvAccess) Basics
	Slide 52: CA (and pvAccess) Basics
	Slide 53: CA (and pvAccess) Basics
	Slide 54: CA (and pvAccess) Basics
	Slide 55: EPICS Clients: Archiver
	Slide 56: EPICS Clients: Archiver Web Server
	Slide 57: EPICS Clients: Archiver Viewer
	Slide 58: EPICS Clients: PyEpics, caproto, Pvapy…
	Slide 59: EPICS Clients: Graphical User Interfaces
	Slide 60: EPICS Clients: Graphical User Interfaces
	Slide 61: EPICS Clients: Graphical User Interfaces
	Slide 62: EPICS Clients: Graphical User Interfaces
	Slide 63: Python Servers: PCASpy, PythonSoftIOC, …
	Slide 64: References
	Slide 65

