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EPICS PVs

Each PV has several additional properties:

Physical interpretation of data

Possible alarms or warnings related to this PV: including 
disconnection with hardware or other reliability problems.

If > 1, PV is an array.

Limits that raise alarms

Date and time of the last update of this PV

PVs also have read and write access control. For instance, 

we cannot write on a PV that only maps the readout of 

some property:

Command to write on a PV Desired setpoint value
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• Analog/Long/Binary/String Input: read data from hardware (they differ on the data type that can be handled);
• Analog/Long/Binary/String Output: send data to hardware;
• Calculation Record (Output): value based on state of other records (and have conditional updates);
• Waveform: stores waveforms of data (only 1D arrays);
• Multi-Bit Binary Input/Output: trigger tasks based on up to 16 choices (ENUMS)
• ...

• Each record type have a different set of fields, and different data types (char/int/long, float/double, string) 
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PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA 
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a 
different set of properties.

Have a set of fields, which varies according to the record 
type.

Can be used to retrieve information or change state of 
the records, triggering different computations, or setting 
hardware.

Can be combined to perform complex logic. Can also be 
managed via a finite state machine controller 
(sequencer) to enhance their computational features.
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PVs ≠ Records

PVs Records

Is the information unit the client receives via a CA 
(pvAccess) connection.

Are the IOC building blocks, elements of its database.

Has several properties. Different data types have a 
different set of properties.

Have a set of fields, which varies according to the record 
type.

Can be used to retrieve information or change state of 
the records, triggering different computations, or setting 
hardware.

Can be combined to perform complex logic. Can also be 
managed via a finite state machine controller 
(sequencer) to enhance their computational features.

record name

PV name field name

Each record field is a separate PV with its own properties and read/write access control. “VAL” is the default field.
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CA (and pvAccess) Basics

CWS: Client workstation.
IOC: Input/Output Controller. PVs server.
LAN: Communication network.

The connection process works this way:
• The client sends a broadcast in the network “asking which IOC 

serves a given PV name”;
• The IOC that serves that PV responds to the client “I do.”
• A virtual circuit (TCP connection) is established between them, 

and a channel of communication is created for that PV;
• Existing virtual circuits are reused to minimize the number of TCP 

connections. New channels are added to these circuits.

After the connection is stablished, get and put requests can be 
issued. The client can also register that PV to receive 
asynchronous updates of new values or alarm states.

Creates a connection and register the PV for value updates

New values are sent by the IOC 
asynchronously as soon as they 
change, without the need for the 
client to request update: latency and 
network traffic optimization.
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EPICS Clients: Archiver

Allows storage of hundreds of thousands of PV
with custom sampling rate and storage policies.
The web management interface permits 
controlling archive parameters of each PV and 
provides general reports.
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EPICS Clients: Archiver Web Server

https://ais-eng-srv-ta.cnpem.br/retrieval/data/getData.json?pv=SI-01M1:PS-CH:Current-Mon&from=2025-
08-10T00%3A00%3A00-03%3A00&to=2025-08-10T05%3A00%3A00-03%3A00

The web server has a REST API, so it is possible to control the archived PVs directly via urls. For instance, we 
can retrieve stored data:

This type of API for url construction can easily be wrapped with some python code:
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EPICS Clients: Archiver Viewer

Example of monitoring: SIRIUS cavity 
warm up and cool down after cryogenic 
fault in august 2025.
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EPICS Clients: PyEpics, caproto, Pvapy…

PyEpics provides full control and monitoring of PVs properties, 
including the asynchronous update functionality.
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EPICS Clients: Graphical User Interfaces

CS-studio:
• Largely used in the 

EPICS community;
• Implemented in Java;
• Extensive list of 

widgets;
• Heavy use of 

threading;
• Drag and drop display 

builder;
• Alarms table and 

integration with 
Logbooks and 
Archiver;

• Save and Restore 
feature.
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EPICS Clients: Graphical User Interfaces

PyDM:
• Implemented in Python, 

making use of PyQt;
• Easy integration with python 

libraries, advanced scripting 
and complex interfaces; 

• Extensive list of widgets;
• Drag and drop display builder 

integrated with QtDesigner;
• EPICS and Archiver plugins;
• Most of SIRIUS GUIs were 

made with PyDM.
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Python Servers: PCASpy, PythonSoftIOC, …

• PCASpy allows writing EPICS IOCs in python;
• Easy to use. Even users with little knowledge of EPICS (such as myself), 

can write their own IOCs;
• Support for most of the PV data types;
• IOC programming must be done in python: no records to embed logic;
• Good option to create IOCs to provide abstraction layers to the control 

system (soft IOCs), such as:
• Configurations data;
• Accelerators model data;
• Implementation of measurement scripts;
• Slow orbit correction (performance bottlenecks in traditional IOC);
• PVs translations and unit conversions;
• Hardware abstraction IOCs;
• …

• Most of SIRIUS soft IOCs and all power supplies IOCs were 
implemented with PCASpy.
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References

Getting started with EPICS — EPICS Documentation

EPICS R3.15 Channel Access Reference Manual

Channel Access Protocol Specification

Channel Access

EPICS Archiver Appliance — archiverdocs 0.1 documentation

Epics Channel Access for Python — Epics Channel Access for Python

caproto: a pure-Python Channel Access protocol library — caproto 1.2.0 documentation

Control System Studio

PyDM - Python Display Manager — PyDM 1.27.2 documentation

pythonSoftIOC — pythonSoftIOC 4.5.0+22.g8c4b516 documentation

PCASpy Documentation — pcaspy 0.8.1 documentation
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Thank you for your attention!

Many thanks to Érico Rolim for his valuable feedback on this presentation 
and for helping me understand key concepts related to EPICS!
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