

Julich-Brain GapMaps parcellation based on structural connectivity using Constellation

C. Langlet¹, D. Rivière¹, S. Bludau², T. Dickscheid², K. Amunts^{2,3}, J.-F. Mangin¹

¹Université Paris-Saclay, CEA, CNRS, NeuroSpin, Baobab, Saclay, France ²Institute of Neuroscience and Medecine (INM-1), Research Centre Jülich, Jülich, Germany ³Cecile und Oskar Vogt Institut für Hirnforschung, Heinrich-Heine Universität Düsseldorf, Germany

Context

- → **Release of the Julich-Brain**^[1] as a 3D probabilistic cytoarchitectonic atlas in continuous evolution
- → GapMaps are difficult regions to map from the architectonics point of view that were regrouped under the same labels to provide a wholebrain consistent parcellation
- → Contribution to the mapping effort with **Constellation**^[2], using **structural connectivity** to provide coherent regions of relevant size.

Materials

- → Group of 200 subjects from HCP
- → FSL tractographies
- → Freesurfer white meshes
- → BrainVisa environment
- → **Julich-Brain** version 2.9 projected on the surface^[3]

FreeSurfer

Constellation

For each region of a base atlas:

- → Compute the connectivity matrices of the group
- → Determine the **main connectivity basins** using a watershed algorithm
- → Generate from **2 to 12 candidate-clusters** according to the reduced connectivity profile
- → Select the number of clusters according to a **criterion**

Figure 1: Constellation algorithm

Connectivity basins

→ Represents the basin regions to which the region of interest is mainly connected

Figure 2-A: Reduced connectivity basins of the left Frontal-I GapMap

Figure 2-B: Reduced connectivity basins of the right Frontal-I GapMap

Figure 2-C: Reduced connectivity basins of the left Temporal-to-Parietal GapMap

Figure 2-D: Reduced connectivity basins of the right Temporal-to-Parietal GapMap

Figure 2: Reduced connectivity basins of two GapMaps

Parcellations of GapMaps

- \rightarrow Criterion: two times the mean area of Julich-Brain areas i.e. 300mm²
- → Parcellations will be available on EBRAINS knowledge graph

Figure 3-B: Parcellated GapMaps on inflated average brain

Figure 3-C: Parcellated GapMaps on average brain

Figure 3-D: Parcellated GapMaps integrated into Julich-Brain

Figure 3: Parcellations of GapMaps and integration into Julich-Brain shown using an application of the four-colors theorem

Discussion and perspectives

- → Criterion is difficult to assess: links with the Julich-Brain divisions can improve the results
- → **Hybrid approach** that can provide some **guidelines** for the cytoarchitectonics parcellation
- \rightarrow Can be **projected** onto individual subjects to obtain **individual matrices and parcellations**^[4]
- \rightarrow Will be used to **provide connectivity matrices** to simulations of the brain dynamics using parcels of homogeneous areas^[5]

References

[1] K. Amunts, H. Mohlberg et al. Julich-Brain: A 3D probabilistic atlas of the humain brain's cytoarchitecture, Science, 2020.

[5] P. Sanz-Leon et al. The virtual brain: a simulator of primate brain network dynamics, Frontiers in neuroinformatics, 2013.

- [2] S. Lefranc et al. Groupwise connectivity-based parcellation of the whole human cortical surface, Medical Image Analysis, 2016.
- [3] J.-F. Mangin et al. Surface projections of julich-brain cytoarchitectonic maps (v2.9), EBRAINS, 2021. [4] C. Langlet et al. Nested parcellations connectome delivered for one large dataset using Constellation algorithm (v1.0). EBRAINS, 2022.
- This research received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 945539 (HBP SGA3).
- Data were provided in part by the Human Connectome Project funded by the NIH.