Type: 60s-Pitch + Scientific Poster

The Effect of β-Glycerophosphate on the Crystallization of Amorphous Calcium Carbonate (ACC)

Calcium carbonate (CaCO₃) minerals are widely distributed in organisms as skeletons and hard tissues. This biomineralization process, which controls the formation of CaCO₃ in nature, often proceeds via amorphous calcium carbonate (ACC), a metastable precursor phase. However, the mechanisms of ACC stability and transformation remain unclear, particularly the impact of organic phosphates, which play a crucial role in microbial metabolic processes. Here, we investigated β -glycerophosphate (β -GP), a model organic phosphate ligand containing phosphate and glycerol groups, to evaluate its influence on the nucleation and growth dynamics of ACC and on its crystallization to stable CaCO₃ polymorphs. Using in-situ UV-Vis spectroscopy, in-situ dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray diffraction, we show that β -GP affects the lifetime of ACC, stabilizes vaterite, and influences the sizes of initially formed ACC. These findings suggest that β -GP plays a key role in ACC stability and size, highlighting the relevance of organic compounds in biogenic CaCO₃ formation.

Author: DAI, Qi (1 GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany. 2 Freie Universität Berlin, 14195 Berlin, Germany.)

Co-authors: Dr FORJANES, Pablo (1 GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany. 2 3 Dpt. Mineralogy and Petrology. Complutense University of Madrid, 28040, Madrid, Spain.); BAHL, Chiara (GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany.); Prof. G. BENNING, Liane (1 GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany.) 2 Freie Universität Berlin, 14195 Berlin, Germany.)

Presenter: DAI, Qi (1 GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany. 2 Freie Universität Berlin, 14195 Berlin, Germany.)