New measurement of the ${}^{2}H(p,\gamma){}^{3}He$ reaction at Felsenkeller underground lab Alexander von HUMBOLDT STIFTUNG

M. Lukyanova^{1,2*}, E. Masha¹ for Felsenkeller and ChETEC-INFRA³

¹Institute of Radiation Physics, HZDR, Dresden, Germany, ²Institute of Nuclear and Particle Physics, TU Dresden, Dresden, Germany, ³https://www.chetec-infra.eu *m.lukyanova@hzdr.de

Abstract

The primordial deuterium abundance can be used to probe the cosmological baryon density. The $^{2}H(p,\gamma)^{3}He$ reaction is responsible for deuterium destruction during Big Bang Nucleosynthesis (BBN) and plays a crucial role in determining its abundance. This reaction was previously measured at BBN energies by the LUNA collaboration using a windowless gas target system, covering a proton beam energy range of 50–400 keV. However, measurements at higher energies using solid targets indicate an extrapolated cross-section that is 10 % higher. To reduce the tension between low- and high-energy data, a new measurement of the $^{2}H(p,\gamma)^{3}He$ reaction was performed at the Felsenkeller shallow-underground laboratory in Dresden, covering a proton beam energy range of 300–1200 keV, with partial overlap with both data sets. The reaction was studied using a solid target setup and multiple HPGe detectors positioned around the target, providing both cross-section and angular distribution data. The latter provides additional constraints for improving ab initio calculations.

Motivation

State of the art

Big Bang Nucleosynthesis (BBN)

The promordial abundance depens only on:

- Baryon density: $\Omega_b h^2$
- Particle Physics: *N*_{eff}...,
- Nuclear astrophysics: Cross sections of relevant processes at BBN energies

For many years ${}^{2}H(p,\gamma){}^{3}He$ reaction has governed the uncertainty on the primordial deuterium abundance.

- The BBN energy range measured by LUNA, <3% uncertainty
 - $\Omega_{\rm B} h^2 |_{\rm CMB} = (2236 \pm 15) \times 10^{-5}$
- $\Omega_{\rm B}h^2|_{\rm BBN, \ LUNA[10]} = (2233 \pm 36) \times 10^{-5}$
- High energy data at $E_p = 400-800$ keV at HZDR

Felsenkeller GOAL

HELMHOLTZ ZENTRUM

DRESDEN ROSSENDORF

• Angular distribution measurements at $E_p = 300 - 1200 \text{ keV}$

• Cross-section data at $E_p = 300 - 1200$ keV (overlap LUNA-HZDR data)

Experimental setup

5 MV Felsenkeller accelerator

ChETEC-INFRA supported

[●] ²H, ⁴He RF beams ¹²C, ¹⁶O, and other beams Beam current up to 30 uA

15.5

143.5

Data taking and analysis

- Detection efficiency using standard sourses, ${}^{27}AI(p,\gamma){}^{28}Si$ reaction at 992 keV resonance and Monte Carlo simulations
- High statistics run at $E_p = 300 1200$ keV with 50 keV step
- Reference run at $E_p = 608$ keV before and after each energy

Preliminary results and outlook

Target analysis Before irradiation After irradiation

ERDA EBS **NRA** Energy (MeV) (p,p) 2MeV D(³He,p)⁴He

Angular distributions

Preliminary S-factor

