Quasi-Periodic Pulsations in EUV Brightenings

Daye Lim^{1,2,*}, Tom Van Doorsselaere¹, David Berghmans², Laura A. Hayes³, Cis Verbeeck², Nancy Narang², Marie Dominique², and Andrew R. Inglis^{4,5}

> ¹Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven ²Solar-Terrestrial Centre of Excellence – SIDC, Royal Observatory of Belgium ³School of Cosmic Physics, Dublin Institute for Advanced Studies, DIAS Dunsink Observatory ⁴Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center ⁵Physics Department, The Catholic University of America

KU LEUVEN

\$ QPPs as an Intrinsic Feature of Flares EUV Brightenings (Small-Scale flares?) Berghmans+21 3D simulations (Chen+21) in Standard Solar Flares in EUV Brightenings (a) Top View dot-like

EUV Brightenings Observed by the Solar Orbiter/EUI HRIEUV 174 Å at 0.29 au

~105 km/pix & 3 s cadence

val Observatory

QPP Detection Method Applied to EUV Brightening Light Curves

Statistical Comparison of QPPs in EUV Brightenings and Larger-Scale Flares

30 70 60 25 Brightenings [%] 50 Rate 20 40 ╞ Ce 15

in Contrast to

Conclusions

- The robust presence of QPPs in EUV brightenings supports the interpretation that these events may be small-scale manifestations of flares.
- The absence of period scaling with loop length further suggests that standing waves may not be the primary driver of QPPs in these events.