Introduction

Q-variables

UAWSOM

Global solar coronal models driven with Alfvén and kink waves

Tom Van Doorsselaere

Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven

4 July 2025

In collaboration with: Norbert Magyar, Valeria Sieyra, Marcel Goossens, Max McMurdo, Luka Banović

SOUL is a Methusalem project of the Flemish government and KU Leuven E 🔊 🔍

Tom Van Doorsselaere

Wave heated coronal models

4 July 2025 1 / 16

000000000000000000000000000000000000000			
Alfvén vs. kink		6	
VD et al. (2008): kink	and Alfvén waves in co	ronal loops	
 incompressible 	 incompressible 		
• transverse to \vec{B}	• transverse to \vec{B}		
• torsional	• kinking		
• $V_A^2 = \frac{B^2}{\mu\rho}$	• $V_k^2 = \frac{2B^2}{\mu(\rho_i + \rho_e)}$		
 homogeneous OK 	• density (or \vec{V} or \vec{B})	structure essential	৩৫৫
Fom Van Doorsselaere	Wave heated coronal models	4 July 2025	3 / 16

Introduction

Introduction	<i>Q</i> -variables	UAWSOM	Conclusions
0000000		000	O
			\frown

Kink waves in loops

Decaying: excited after flare strong damping

Decayless: no apparent excitation no apparent damping

Q-variables

UAWSOM

Conclusions

Kink and Alfvén waves in coronal plumes

Tom Van Doorsselaere

Wave heated coronal models

4 July 2025

5 / 16

Introduction	Q-variables	UAWSOM	Conclusions
	000	000	O

Alfvén turbulence

Propagation of Alfvén waves with Elsässer variables $ec{z^{\pm}}=ec{v}\pm rac{ec{B'}}{\sqrt{\mu
ho}}$

Governing equations (incompressible MHD, no $P'_{\rm T}$ for Alfvén, $\vec{V}_0=0$):

$$\frac{\partial \vec{z}^{\pm}}{\partial t} \mp \vec{V}_{\mathcal{A}} \cdot \nabla \vec{z}^{\pm} = -\vec{z}^{\mp} \cdot \nabla \vec{z}^{\pm}$$

Stein (2013)

Van der Holst et al. (2014): Alfvén Wave Solar Model

- Starts from MHD/2-fluids
- two extra equations for w_A^{\pm} : advection, reflection, cascade
- ullet includes extra force due to Alfvén wave pressure P_{A}
- includes extra heating terms due to cascade

$$E = \frac{p}{\gamma - 1} + \rho \frac{v^2}{2} + \frac{B^2}{2\mu} + W_{\rm A}^+ + W_{\rm A}^-$$

$$\frac{\partial W_{\rm A}^{\pm}}{\partial t} + \nabla \cdot \left(\left(\vec{V} \mp \vec{V}_{\rm A} \right) W_{\rm A}^{\pm} \right) + \frac{W_{\rm A}^{\pm}}{2} \nabla \cdot \vec{V} = -\frac{1}{L_{\perp}} \frac{1}{\sqrt{\rho}} \sqrt{W_{\rm A}^{\mp}} (W_{\rm A}^{\pm}) \\ \pm \mathcal{R} \sqrt{W_{\rm A}^{+} W_{\rm A}^{-}}$$

Introd	uction
	0000

Q-variables

UAWSOM

Conclusions

AWSOM

Van der Holst (private communication): problems in open-field regions, not enough driving of wind

Cooper Downs (private communication): extra heating term needed in low corona to match observations

Tom Van Doorsselaere

Wave heated coronal models

4 July 2025 8 / 16

Introduction	<i>Q</i> -variables	UAWSOM	Conclusions
	०००	000	O
			\frown

Turbulence in transverse kink waves

Karampelas et al. (2019)

Non-linear damping of kink waves: power law and heating How to add kink heating to AWSOM?

Tom Van Doorsselaere

4 July 2025 9 / 16

00000000	000	000	0
Q-variables			
Van Doorsselaere e	et al. (2024)	: Introduce new <i>Q</i> -variables	

$$\vec{Q}^{\pm} = \vec{V} \pm \alpha \vec{B}$$

(\vec{V} is velocity, \vec{B} is magnetic field, α is parameter)

 \rightarrow extension to Elsässer variables

 $(ec{Z}=ec{V}\pmec{B}/\sqrt{\mu
ho}$, i.e. $lpha=1/\sqrt{\mu
ho}$)

 $\rightarrow \alpha \vec{B} \text{ is phase speed of wave}$ $<math display="block"> \frac{D^{\pm}}{Dt} = \frac{\partial}{\partial t} + \vec{Q}_0^{\pm} \cdot \nabla = \frac{\partial}{\partial t} + (\vec{V}_0 \pm \alpha \vec{B}_0) \cdot \nabla$ Allows to track other waves than Alfvén waves e.g. kink waves in inhomogeneous plumes Split between propagating up or down

 \rightarrow Generalisation of: characteristics, Riemann invariants, Frieman-Rotenberg, Elsässer variables

Tom Van Doorsselaere

Q split between propagation directions!

 $Q_{f_{\mathbf{X}}}^+$

Linearised induction equation:

$$rac{\partial ec{B'}}{\partial t} =
abla imes \left((ec{V} + ec{v}) imes ec{B}
ight)$$

Take $\vec{B} = B(x, y)\vec{e_z}$, $\vec{V} = V(x, y)\vec{e_z}$, Fourier analyse in z and t:

$$\frac{\partial \vec{B}'_{\perp}}{\partial t} = B(x, y) \frac{\partial \vec{v}_{\perp}}{\partial z} - V(x, y) \frac{\partial \vec{B}'_{\perp}}{\partial z}, \qquad -i\omega \vec{B}'_{\perp} = ik_z B(x, y) \vec{v}_{\perp} - ik_z V \vec{B}'_{\perp}$$

Rearrange using $\vec{v} = \frac{1}{2} (\delta \vec{Q}^+ + \delta \vec{Q}^-)$ and $\vec{B}' = \frac{1}{2\alpha} (\delta \vec{Q}^+ - \delta \vec{Q}^-)$:
 $(\omega - k_z V + \alpha k_z B) \delta \vec{Q}^+_{\perp} = (\omega - k_z V - \alpha k_z B) \delta \vec{Q}^-_{\perp}$

Choice of α splits waves between directions. For kink waves:

$$V_{\rm k}^2 = rac{2B^2}{\mu(
ho_i +
ho_e)}, \ {
m so} \ lpha = \sqrt{rac{2}{\mu(
ho_i +
ho_e)}}$$

Introduction	Q-variables	UAWSOM	Conclusions
	000	●○○	O

UAWSOM

Van Doorsselaere et al. (2025): UAWSOM: Uniturbulence and AWSOM \rightarrow make equation for kink wave heating • Linearise *Q*-MHD equations (VD et al. 2024) • incompressible $\delta \rho = 0$ • only perp. components $\vec{\delta Q}_{\perp}^{\pm}$ • Scalar multiplication with $\rho_0 \vec{\delta Q}_{\perp}^{\pm}/2$ \rightarrow energy density kink $W_k^{\pm} = \frac{\rho_0}{4} \langle (Q^{\pm})^2 \rangle$

- Average over cross-section
 - \rightarrow Remove small scales

$$rac{\partial \mathcal{W}^\pm_\mathrm{k}}{\partial t} +
abla \cdot (ec{Q}^\mp_\mathrm{k} \mathcal{W}^\pm_\mathrm{k}) + rac{\mathcal{W}^\pm_\mathrm{k}}{2}
abla \cdot ec{V} = -rac{1}{L_{\perp,\mathrm{VD}}} rac{1}{\sqrt{
ho_\mathrm{e}}} (\mathcal{W}^\pm_\mathrm{k})^{3/2}$$

Perpendicular length $L_{\perp, VD}$ scales with R, ζ and filling factor f

Perpendicular length $L_{\perp,\text{VD}}$ scales with R, ζ and filling factor f

UAWSOM in MPI-AMRVAC

McMurdo et al. (2025, poster):

Kink wave heated equilibrium. No background heating needed.

Tom Van Doorsselaere

 $W_A^- \leq W_A^+ < W_k^+$

Wave heated coronal models

UAWSOM 000 Conclusions

Conclusions

- Solar coronal heating problem
- Potential wave heating contributions?
- $\bullet~$ Coronal structures $\rightarrow~$ kink waves
- New wave tracking formalism: Q-variables
- UAWSOM: kink wave heating model
- kink waves heat more than Alfvén waves