Spectrometry of cosmic-ray neutrons with the High Efficiency Neutron Spectrometry Array

Álvaro Quero-Ballesteros

University of Granada & IFIC-CSIC, Valencia alvarojquero21@ugr.es Co-Authors: A. Tarifeño-Saldivia, N. Mont

HENSA

High Efficiency Neutron Spectrometry Array

http://www.hensaproject.org

The HENSA collaboration

UNIVERSIDAD DE GRANADA

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

1542

Universidad Zaragoza

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The origin of cosmic-ray neutrons

- Primary cosmic-rays are mainly composed of protons & He nuclei.
- Neutrons are produced as secondary particles in Extensive Air Showers (minimum energy ~500 MeV).
- Sources: SEP, Galactic & extra-galactic cosmic-rays.

Schema: Simpson et al. (1953, Phys. Review 90, 934)

Credits Tragaldabas Collaboration

The anti-correlation between neutron flux and solar activity

Solar activity induces a modulation in the flux of galactic cosmic-rays

Instrumentation networks on Earth for secondary cosmic-rays

- Examples of ground-based detectors can be neutron monitors or muon detectors.
- The Neutron Monitor Database (NMDB) offers real-time global data from multiple neutron monitor stations, but these detectors lack spectral resolution.

Standard neutron monitor (NM64): BF3 Tube + Polyethylene + Pb Layers

MiniTrasgo muon detector. IGFAE, Tragaldabas collaboration

The effect of solar events on secondary cosmic-ray radiation

Forbush Decrease (FD)

The Sun's magnetic activity temporarily reduce galactic cosmic ray flux at Earth

Ground Level Enhancement (GLE)

High energy solar particle events produce a temporary spike in cosmic ray intensity on Earth

Why is it important to characterize the cosmic neutron spectrum?

We aim to characterize the secondary cosmic-ray neutron spectrum along the solar cycle and during intense solar storms for:

How do we perform neutron spectrometry?

Detection principle (Bonner Sphere Spectrometers):

Spectrum reconstruction:

NEMUS Bonner Spheres System

220 200 180

e (mm)

160

140

120 100 80 60

The HENSA project

- Development and application of high-efficiency neutron spectrometers
- Based on Bonner Sphere Spectrometers (BSS).
- Topology modification to increase detection efficiency (5% 15%). Typical BSS doesn't have enough efficiency to resolve the neutron spectrum within short time intervals.
- Energy sensitivity from meV to GeV neutrons, complementing the information of NMDB.
- Main applications: Space weather, cosmic-ray physics, ambient dosimetry, underground.

First version of HENSA (2011)

The HENSA++ spectrometer (2024)

The HENSA 2020 Cosmic-Ray Neutron Campaign

ISES Solar Cycle Sunspot Number Progression

Solar activity on the HENSA 2020 campaign

- Characterization of the cosmic-ray neutron spectrum on Rc [5.5, 8.5] GV during the minimum solar activity of cycle 25.
- ✤ Complements the range [2.5, 4.5] GV measured by Gordon et al (2004), IEEE 51(6).

Preliminary results 2020 campaign

Temporal Analysis

- ◆ We can provide a general form for the cosmic neutron spectrum on Rc [5.5, 8.5] GV.
- Demonstration of the reconstruction capability in time intervals of ~1 hour.

The HENSA++ spectrometer

- HENSA++ is the latest iteration of HENSA (16 detectors). During the last 2 years it has been under commissioning.
- Design with **optimized resolution**, overall in the high-energy region.
- Monitor the cosmic-ray neutron spectrum for space weather and ambient dosimetry research.

HENSA++ commissioning setup (IFIC Gamma & Neutron Lab)

HENSA++ first outdoors measurement (Zaragoza, Spain)

HENSA++ benchmarking exercise with AmBe neutron source (PSI, Switzerland)

Preliminary results of the commissioning phase

First Outdoors Cosmic-ray neutron measurements

Outdoors, Red line: IAXO laboratory

Detection of the May 2024 FD

00:00-08/05 20:00-08/05 16:00-09/05 12:00-10/05 08:00-11/05 04:00-12/05 00:00-13/05

Temporal rate evolution of HENSA++ and the neutron monitor stations CALMA (6.95 GV) and ROME (6.25 GV) during the FD of May 2024.

Final emplacement: Phase 0 commissioning

- We are commissioning a first reduced version of HENSA++ at the Observatorio Astrofísico de Javalambre in Spain (1957 masl, Rc = 7.07 GV) since 31/10/2024.
- This reduced version is composed of a low, an intermediate, and a high-energy detector.
- We are planning to install the full setup during this month (Phase 1).

Recent Observation of a G4 Geomagnetic Solar Storm - 31/05/2025

NOAA model prediction about the propagation of the CME. https://www.ncei.noaa.gov/products/space-weather/partners/swpc-products-and-data

Image recorded by the NOAA LASCO C2 coronagraph from 31/05 to 01/06.

Observed Forbush Decrease on the Earth

Comparison with the NMDB data

Comparison of each channel with satellite data

Temporal evolution of the 3 HENSA++ detectors placed at OAJ and the GOES-18 recorded proton flux Temporal evolution of the 3 HENSA++ detectors placed at OAJ and the NOAA recorded magnetic field, proton density and velocity.

- Suddenly decrease on the high-energy proton component that produced this FD.
- Fast fluctuations on the IMF and the proton density and velocity profiles.
- Strange decrease of the intermediate channel before the FD (?).

Final remarks

- The HENSA project provides complementary spectral sensitivity to the NMDB, enhancing the analysis of primary cosmic-ray impacts on Earth.
- We have characterized the cosmic-ray neutron spectrum across a broad range of magnetic rigidities.
- The HENSA++ detector has been successfully commissioned in its final emplacement, showing consistency with NMDB measurements and effectively detecting recent solar events.
- We aim to collaborate with the Solar Physics community to better understand the influence of solar activity and high-intensity solar events on secondary radiation at ground level.

HENSA High Efficiency Neutron Spectrometry Array

Thank you for your attention!

Backup

Solar modulation of the primary spectrum

Solar Minimum

Solar Maximum

Differential particle intensities of primary galactic H, He, O, Mg, and Fe ions as a function of kinetic energy per nucleon measured near Earth during the BESS experiments (Sanuki et al., 2000; Haino et al., 2004), with the CRIS detector on-board ACE (Stone et al., 1998; Haino et al., 2004), and with EPHIN on-board SOHO (Müller-Mellin et al., 1995) in July 1998 (top panel), i.e. solar minimum, and Augus 2002 (bottom panel), i.e. solar maximum conditions. Experimental data are compared with predictions using models of Burger/Usoski (Burger et al., 2000; Usoskin et al., 2005), Garcia-Munoz (Garcia-Munoz et al., 1975), CREME96 (Tylka et al., 1997), and Bad-hwar/O'Neill (O'Neill, 2006, 2010). Pioch PhD Thesis (2012)

Behaviour of charged particles in the Earth magnetic field

The Earth magnetic field acts as a shielding against cosmic-rays

Trajectories of charged particles in the Earth magnetic field. From: https://www.nmdb.eu/public_outreach/es/03/

$$R = \frac{pc}{|q|} = \frac{pc}{Ze} = r_L |\vec{B}|c$$

Figure 3. Global grid of vertical geomagnetic cutoff rigidities (GV) calculated from charged particle trajectory simulations in the IGRF field for 2008.

The origin of background neutrons

At surface level

Nuclear cascade reactions generated by primary cosmic-rays (p⁺, He)

In underground laboratories

- (α, n) reactions on rocks
- Spontaneous Fission (U/Th)
- Neutrons induced by cosmic muons

HENSA setup: "active part"

Detection reaction: ³ $He + n \rightarrow$ ³ H + p **Q=0.764** MeV

High Thermal cross section!!: 5330b

Table 13-1.	Neutron and gamma-ray in	nteraction proba	bilities in	typical gas	
proportiona	l counters and scintillators				

i par le de la	Interaction Probability		
Thermal Detectors	Thermal Neutron	1-MeV Gamma Ray	
³ He (2.5 cm diam, 4 atm)	0.77	0.0001	
Ar (2.5 cm diam, 2 atm)	0.0	0.0005	
BF ₃ (5.0 cm diam, 0.66 atm)	0.29	0.0006	
Al tube wall (0.8 mm)	0.0	0.014	
	Interaction Probability		
Fast Detectors	1-MeV Neutron	1-MeV Gamma Ray	
⁴ He (5.0 cm diam, 18 atm)	0.01	0.001	
Al tube wall (0.8 mm)	0.0	0.014	
Scintillator (5.0 cm thick)	0.78	0.26	

- These neutron counters are gaseous ionization detectors that use 3He as converting gas.
- Due to the high thermal capture cross section, 3He filled counters have a high neutron sensitivity.
- For non-thermal neutrons, the high efficiency can be exploited by using moderators.
- In addition, the low gamma-ray sensitivity makes these detectors very attractive for neutron spectroscopy (Bonner spheres).

*Extracted from Neutron Detectors, T. W. Crane and M. P. Baker

HENSA comparison with BSS

Optimization of HENSA++: Resolving power kernels

LogE	Mean(vInit)	Mean(vOpt)	SD(vOpt)/SD(vInit)-1
-8	-7.72	-7.69	-44.20%
-7	-6.76	-6.86	-51.11%
-6	-5.76	-5.89	-20.37%
-5	-4.93	-4.86	-24.11%
-4	-3.93	-3.98	-4.65%
-3	-3.00	-2.98	-8.27%
-2	-2.07	-2.08	-2.13%
-1	-1.12	-1.09	2.56%
0	-0.08	-0.09	-1.71%
1	0.91	0.94	-2.15%
2	1.43	1.72	-38.90%
3	2.71	2.73	-39.72%
NH. Fa			NUCLEAR INSTRUMENTS

Nuclear Instruments and Methods in Physics Research A 490 (2020) 690-695 ELSEVIER Nuclear Instruments and Methods in Physics Research A 490 (2020) 690-695 Resolving power of a multisphere neutron spectrometer Marcel Reginatto* $\boxed{\langle \phi \rangle_{E_0} = \int A(E_0, E)\phi(E)dE}$

5. The HENSA++ spectrometerA. Quero-Ballesteros | Interdisciplinary Physics of the Sun, Bad Honnef, Germany | 03/07/2025 | 28

Unfolding Parametric codes

- Parametric codes: Model the neutron spectrum based on the physics of neutron interactions (e.g., MITOM, FRUIT).
- They generate multiple spectra using Monte Carlo sampling and select the one that best fits the data by minimizing the chi-squared value.

$$\chi^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_i^{input} - C_i^{output}}{\sigma_i^{input}} \right)^2$$

3. Reconstruction of the neutron Opertra Ballesteros | Interdisciplinary Physics of the Sun, Bad Honnef, Germany | 03/07/2025 | 29

Unfolding Iterative codes

- Iterative codes: Employ some "a priori" spectrum and perturb it iteratively based on mathematical algorithms (eg. MAXED, GRAVEL, BAYES)
 - Entropy maximization (Information Theory)

max:
$$S[\mathbf{f}] - \frac{1}{\lambda} \chi^2[\mathbf{f}] \qquad S[\mathbf{f}] = -\sum_{i=1}^n \left(f_i \ln \frac{f_i}{h_i} - f_i + h_i \right)$$

• Expectation maximization (Bayes Theorem)

$$\hat{f}_j = \frac{1}{\sum_{i=1}^n R_{ij}} \sum_{i=1}^n P(f_j | d_i) \hat{d}_i, \quad j = 1, \dots, m$$

These codes iterate until some stopping criteria is reached. Usually, chi-squared:

$$\chi^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{C_{i}^{input} - C_{i}^{output}}{\sigma_{i}^{input}} \right)^{2}$$
$$\chi^{2} \approx 1$$

3. Reconstruction of the neutron Opertra Ballesteros | Interdisciplinary Physics of the Sun, Bad Honnef, Germany | 03/07/2025 | 30

Recent activities with HENSA++ at the Paul Scherrer Institute (PSI)

Intercomparison exercise BSS measurements (p-channel, Target M)

Position 2

Target M

Benchmarking measurements with AmBe source (Calibration laboratory)

Applications: Underground (I)

HENSA at Felsenkeller, Germany (2020)

M Grieger et al (2020), Phys Rev D, 101, 123027

HENSA at LSC Hall A, Spain (2020) SEA Orrigo et al (2022), Eur Phys Journal C, 82, 814

Applications: Underground (II)

HENSA at LSC Hall B, Spain (Since 2021) N Mont-Geli et al (2023), Proceeding of Science 441, 312

HENSA at LNGS, Gran Sasso, Italy (Since 2024)

Comparison of each channel with meteo data

GSE coordinate system

