Solar neutrino flux fluctuations caused by g modes

Interdisciplinary Physics of the Sun (4th July, 2025)

Collaborators: Yuuki Nakano³, Masanobu Kunitomo⁴, Sho Sugama⁵, Hiroshi Ito⁶

1. Institute for Space-Earth Environmental Research/Nagoya University, 2. Max-Planck Institute for Solar System Research 3. University of Toyama, 4. Kurume University, 5. Yokohama National University, 6 Kobe University

Yoshiki Hatta, 20250704

Yoshiki Hatta^{1,2}

@Physikzentrum Bad Honnef

Helioseismology: the study of solar oscillations to probe its interior

	restoring force	frequency (period)	sensitive to	Can we detect it?	Ex. 2-d rotational pr of the Sun	۲ C
p mode	pressure	~ 3000 micro Hz (~ 5 min.)	outer envelope (conv. + upper rad.)	Yes (Leighton+1962)		41
fmode	buoyancy	~ 1500 micro Hz (~ 10 min.)	outer envelope	Yes (Leighton+1962)	Equator	42
inertial mode	Coriolis force	~ 0.1 micro Hz (~ months)	outer envelope (conv. + upper rad.)	Yes (Löptien+ <mark>2018</mark> , Gizon+ <mark>2021</mark>)		38
g mode	buoyancy	< 100 micro Hz	central region	No, so far	(Thompson+1996	34

Yoshiki Hatta, 20250704

(Talks by Rachel, Aldo, and Gaël)

Helioseismology: the study of solar oscillations to probe its interior

	restoring force	frequency (period)	
pmode	pressure	~ 3000 micro Hz (~ 5 min.)	
fmode	buoyancy	~ 1500 micro Hz (~ 10 min.)	
inertial mode	Coriolis force	~ 0.1 micro Hz (~ months)	(C
g mode	buoyancy	< 100 micro Hz (~ hours - days)	

Yoshiki Hatta, 20250704

(Talks by Rachel, Aldo, and Gaël)

Difficulty in solar g-mode detection

- There have been many attempts of solar g-mode detection, but ... (see a review by Appourchaux+2010)
- The main difficulty is that amplitudes of solar g modes are very small at the surface
 - e.g., a few mm/s in line-of-sight velocity (vlos)
 - * Actually, it is theoretically difficult to estimate solar g-mode amplitudes (Belkacem+2022, Pincon+2021)
- We need a few more decades observations (in vlos) to achieve signal-to-noise ratio required for the firm detection of solar g modes (Appourchaux+2010) (→ how about solar neutrinos...??)

Yoshiki Hatta, 20250704

(Discussions on solar g-mode detection by LISA)

Why solar neutrino for solar g-mode detection?

- The idea is:
 - solar g modes perturb T and ρ in the central region
 - δT and $\delta
 ho$ cause the perturbation in the nuclear reaction rate $\delta arepsilon$
 - $\delta \varepsilon$ is related to the neutrino flux density fluctuation $\delta \phi$ (e.g. Gough 1991, Kumar and Bahcall 1992 in the context of solar neutrino problem)
- Lopes and Turck-Chièze (2014) evaluated flux fluctuations caused by g modes (in the case of ⁸B neutrinos), putting some constraints on solar g-mode amplitudes
 - How about other types of neutrinos, such as ⁷Be, ¹³N, ¹⁵O, and ¹⁷F neutrinos? (suggested by a Kamiokande experimentalist, Yuuki Nakano)

(Talks by Michael and Francesco)

To evaluate neutrino flux fluctuations caused by solar g modes

by neutrino detectors? (Actually, the answer is not positive one...)

Yoshiki Hatta, 20250704

(for various neutrinos such as ⁷Be, ¹³N, ¹⁵O, and ¹⁷F neutrinos)

Can we detect solar g modes via solar neutrino flux measurements

• Linear adiabatic oscillations:

 $\delta \ln \rho = (\Gamma_3 - 1)^{-1} \delta \ln T$: $\delta \rho \rightleftharpoons \delta T$

 Approximation for nuclear reaction rates (following Lopes & Turck-Chièze) 2014):

$$\varepsilon \propto \rho^{\beta} T^{\eta}$$
: $\delta \varepsilon \rightleftharpoons \delta \rho, \delta T$

• A linear relation between $\delta \ln \phi$ and $\delta \ln \varepsilon$:

 $\rightarrow \delta \phi$ is determined by, e.g., δT alone

- Negligence of time-delay effect:
 - observational point at the same time

Yoshiki Hatta, 20250704

Assumptions in our formulation

• All the neutrinos produced at a certain time in the solar interior are assumed to arrive at an

The first-order perturbation

- The neutrino flux (of the equilibrium state) is: $\Phi_0 = \int \phi_0 \rho_0 dV \quad (\phi_0 = \phi_0(r) \text{ is the neutrino flux density in units of } cm^{-2} s^{-1} g^{-1})$
- The first-order neutrino flux fluctuation is: **1**

$$\Delta \Phi_{\rm osc} = \int \phi' \rho_0 dV + \int \phi_0 \rho' dV$$

• The eigenfunctions may be given as:

nlm

$$\phi'(r,\theta,\psi,t) = \sum_{n\ell m} \operatorname{Re}[\phi'_{n\ell}(r)Y_{\ell}^{m}(\theta,\psi)e^{-i(\theta,\psi)}]^{-i(\theta,\psi)}$$
$$\rho'(r,\theta,\psi,t) = \sum_{n\ell m} \operatorname{Re}[\rho'_{r,n\ell}(r)Y_{\ell}^{m}(\theta,\psi)e^{-i(\theta,\psi)}]^{-i(\theta,\psi)}$$

Yoshiki Hatta, 20250704

 $(\omega_{n\ell m}t + \delta_{n\ell m})$

 $i(\omega_{n\ell m}t+\delta_{n\ell m})$ ך

The neutrino flux fluctuation is:

$$\Delta \Phi_{\rm osc} = \int \phi' \rho_0 dV + \int \phi_0 \rho' dV$$

= $\sum_{n\ell m} \int_0^{R_0} G_{n\ell}(r) \phi_0 \rho_0 r^2 dr \times \int_0^{\pi} P_{\ell}^m(\cos\theta) \sin\theta d\theta \times \int_0^{2\pi} \operatorname{Re}[\exp(-i[\omega_{n\ell m}t + \delta_{n\ell m}] - m\psi)] d\psi$

= 0 (except for $(\ell, m) = (0, 0)$. But no $\ell = 0$ g modes exist.)

$$\phi'(r,\theta,\psi,t) = \sum_{n\ell m} \operatorname{Re}[\phi'_{n\ell}(r)Y_{\ell}^{m}(\theta,\psi)e^{-i(\omega_{n\ell m}t+\delta_{n\ell m})}]$$
$$\rho'(r,\theta,\psi,t) = \sum_{n\ell m} \operatorname{Re}[\rho'_{r,n\ell}(r)Y_{\ell}^{m}(\theta,\psi)e^{-i(\omega_{n\ell m}t+\delta_{n\ell m})}]$$

Yoshiki Hatta, 20250704

What are other possible effects...?

Current assumptions:

• linear adiabatic oscillation

•
$$\varepsilon \propto \rho^{\beta} T^{\eta}$$

- $\delta \ln \phi = \delta \ln \varepsilon = c_1 \delta \ln T$
- Negligence of time-delay effect:
 - All the neutrinos from the solar interi the same time

Yoshiki Hatta, 20250704

• All the neutrinos from the solar interior are assumed to arrive at an observational point at

Taking into account the time-delay effects

The neutrino flux fluctuation is:

$$\begin{split} \Delta \Phi_{\rm osc}(t) &= \int \phi' \rho_0 \mathrm{d}V + \int \phi_0 \rho' \mathrm{d}V \\ &= \int \phi'(r, \theta, \psi, t - d/c) \rho_0(r) \mathrm{d}V + \int \phi_0(r) \rho'(r, \theta, \psi, t - d/c) \mathrm{d}V \end{split}$$

Yoshiki Hatta, 20250704

(*C*: speed of light)

 $d = d_0 + \delta d(r, \theta, \psi)$

$d_0 \sim 1 \text{ AU} \gg 1 R_{\odot} \sim r$

 $\delta d \sim -r \cos \alpha = -r \sin \theta \cos \psi$

Taking into account the time-delay effects

$$\Delta \Phi_{\rm osc}(t) = \frac{2\pi}{\sqrt{3}} \sum_{n} \frac{\omega_{n11}}{c} \int G_{n1}(r) r dr \times \sin(\omega_{n11}t + \delta'_{n11}) - \frac{2\pi}{\sqrt{3}} \sum_{n} \frac{\omega_{n1-1}}{c} \int G_{n1}(r) r dr \times \sin(\omega_{n1,-1}t + \delta'_{n1,-1})$$

- Only $(\ell, m) = (1, \pm 1)$ g modes can be non-zero
- We can evaluate $G_{n\ell}$ with
 - a reasonable solar model (we used solar models in Kunitomo+2022)
 - reference model (we used GYRE; Townsend & Teitler 2013)
- \rightarrow The relative fluctuation in the neutrino flux thus evaluated is $< 10^{-10}$ (for ⁸B, ⁷Be, ¹³N, ¹⁵O, and ¹⁷F neutrinos)

Yoshiki Hatta, 20250704

 $\delta d \sim -r \cos \alpha = -r \sin \theta \cos \psi$

• eigenfunctions that can be obtained by numerically computing linear adiabatic oscillations of the

• and the g-mode amplitude parameter $A_{n\ell} = |\delta \ln T|_{max}$ (we assumed $A_{n\ell} = 10^{-5}$)

Current assumptions:

linear adiabatic oscillation

•
$$\varepsilon \propto \rho^{\beta} T^{\eta}$$

- Negligence of time-delay effect:
 - the same time

Yoshiki Hatta, 20250704

$$\Delta \Phi_{\rm osc} = \int \phi' \rho_0 dV + \int \phi_0 \rho' dV + \int \phi' dV$$

• $\delta \ln \phi = \delta \ln \varepsilon = c_1 \delta \ln T \leftarrow \text{can be expanded up to the second-order...??}$

• All the neutrinos from the solar interior are assumed to arrive at an observational point at

$$\begin{split} \Delta \Phi_{\text{osc}}(t) &= \sum_{(n,\ell,m\neq 0)} \sum_{(n'=n,\ell'=\ell,m'=m)} \pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \end{split} \tag{MOSTLY} \text{PERIODIC} \\ &+ \sum_{(n,\ell,m\neq 0)} \sum_{(n'\neq n,\ell'=\ell,m'=m)} \pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o-o') \\ &+ \sum_{(n,\ell,m\neq 0)} \sum_{(n',\ell'=\ell,m'=-m)} \pi (-1)^{m} \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o+o') \\ &+ \sum_{(n,\ell,m=0)} \sum_{(n',\ell'=\ell,m'=0)} 2\pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o) \cos(o'), \end{split}$$

where $o(t) = \omega_{n\ell m} t + \delta_{n\ell}$

Yoshiki Hatta, 20250704

CONSTANT

$$\ell_m$$
, and $o'(t) = \omega_{n'\ell'm'}t + \delta_{n'\ell'm'}$

Periodic components are still small...

$$\begin{split} \Delta \Phi_{\rm osc}(t) &= \sum_{(n,\ell,m\neq 0)} \sum_{\substack{(n',\ell)=\ell,m'=m}} \\ &+ \sum_{(n,\ell,m\neq 0)} \sum_{\substack{(n',\ell'=\ell,m'=m)}} \\ &+ \sum_{\substack{(n,\ell,m\neq 0)}} \sum_{\substack{(n',\ell'=\ell,m'=-m)}} 2\pi \end{split}$$

Yoshiki Hatta, 20250704

where $o(t) = \omega_{n\ell m} t + \delta_{n\ell m}$, and $o'(t) = \omega_{n'\ell'm'} t + \delta_{n'\ell'm'}$

Speculation...

$$\Delta \Phi_{\rm osc}(t) = \sum_{(n,\ell,m\neq0)} \sum_{(n'=n,\ell'=\ell,m'=m)} \pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \qquad \text{These terms are just sums of all g} \\ + \sum_{(n,\ell,m\neq0)} \sum_{(n'\neq n,\ell'=\ell,m'=m)} \pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o-o') \\ + \sum_{(n,\ell,m\neq0)} \sum_{(n',\ell'=\ell,m'=-m)} \pi (-1)^{m} \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o+o') \\ + \sum_{(n,\ell,m=0)} \sum_{(n',\ell'=\ell,m'=0)} 2\pi \int_{0}^{R_{\star}} Q_{(n\ell),(n'\ell')} dr \times \cos(o) \cos(o'), \qquad A_{n\ell} = 1$$

where $o(t) = \omega_{n\ell m} t + \delta_{n\ell m}$, and $o'(t) = \omega_{n'\ell'm'} t + \delta_{n'\ell'm'}$

Yoshiki Hatta, 20250704

- Solar g modes are important
- Solar neutrino flux measurements could help us to find the solar g modes
- The first-order fluctuation in the neutrino flux is zero
- We see non-zero first-order fluctuations if we take into account the time-delay effect
 - but the relative fluctuation is in the neutrino flux is $< 10^{-10}$ when we assume $A_{n\ell} = 10^{-5}$ (for ${}^{8}B$, ${}^{7}Be$, ${}^{13}N$, ${}^{15}O$, and ${}^{17}F$ neutrinos)
- We are evaluating the second-order fluctuation in the neutrino flux
 - again, the relative fluctuation caused by a single g mode is too small to detect $\sim 10^{-10}$ when we assume $A_{n\ell} = 10^{-5}$ (for ⁸B, ⁷Be, ¹³N, ¹⁵O, and ¹⁷F neutrinos)
 - \rightarrow it is almost impossible to detect individual g modes via neutrino flux measurements...
 - But, the non-time varying component can be non-negligible ($\sim 10^{-5}$??) (when we assume $A_{n\ell} = 10^{-5}$ and that the number of g modes that exist inside the Sun is ~ 10^{5})

Yoshiki Hatta, 20250704

Vielen Dank! Thank you very much! ご清聴いただきありがとうございました!

Yoshiki Hatta, 20250704

@Physikzentrum Bad Honnef

おまけ

Yoshiki Hatta, 20250704

@Physikzentrum Bad Honnef

In the case of the second-order fluctuation

• What we have to compute:

$$\Delta\phi_{\rm osc} = \int \phi' \rho_0 dV + \int \phi_0 \rho' dV + \int \phi$$

- But we have a few differences as below:
 - Lagrangian perturbation $\delta \phi$ is related to Eulerian perturbation ϕ' to second-order, namely, $\delta \phi = \phi' + (\boldsymbol{\xi} \cdot \nabla)\phi_0 + \frac{1}{2}\boldsymbol{\xi} \cdot \{H(\phi_0)\boldsymbol{\xi}\}$
 - we take into account the second-order terms in $\delta\phi$:

$$\delta \ln \phi = c_1 (\delta \ln T) + c_2 (\delta \ln T)^2$$

Yoshiki Hatta, 20250704

Eulerian perturbation:

$$q' = q(r, t) - q_0(r, t)$$

 $b' \rho' dV$

• and, we have to consider couplings among modes with different mode indices

Evaluation with solar models

- Four 1-dimensional solar equilibrium models (Kunitomo+2022):
 - SSM-GS98: standard solar model (SSM) with the GS98 composition (high- $Z \sim 0.02$)
 - SSM-A09: SSM with the A09 composition (low- $Z \sim 0.01$)
 - K2-A2-12: a model where accretion in pre-main-sequence evolution is taken into account
 - K2-MZvar-A2-12: the same as K2-A2-12 except that chemical composition of accreted material is not constant

Yoshiki Hatta, 20250704

Flux densities inside the Sun for different neutrinos

- For each solar model, we compute linear adiabatic oscillations via GYRE (Townsend+2013) •
- Eigenfunctions are normalized so that the absolute value of maximum $(\delta \ln T)_{n\ell}$ is unity
 - We will multiply them later by $A_{n\ell}$ to (somehow) quantify the g-mode amplitudes

Yoshiki Hatta, 20250704

Temperature eigenfunctions $\delta T_{n\ell}(r)$ for the model K2-MZvar-A2-12

Fluctuation evaluation in the case of a single g mode

- In the case of a single g mode: $\Delta \phi_{\rm osc} = \pi \int_{0}^{R_{\odot}} d\theta_{\rm osc}$
- $A_{n\ell} = 10^{-5}$ is assumed

Yoshiki Hatta, 20250704

$$Q_{(n\ell),(n\ell)}\mathrm{d}r + \pi \int_0^{R_0} Q_{(n\ell),(n\ell)}\mathrm{d}r \times \cos(2o) \,.$$

• Neutrino flux fluctuations caused by this g mode are of the order of 10^{-9} in relative difference

Yoshiki Hatta, 20250704

If $A_{n\ell}$ changes in accordance with the solar cycle...

- In our analysis, we assume that $A_{n\ell}$ is a constant for all the g modes
 - What determines $A_{n\ell}$, the g-mode amplitude, is turbulent convection (e.g. Belkacem+2022)
- The constancy in $A_{n\ell}$ guarantees the constancy of the non-time-varying component, but...
- If $A_{n\ell}$ changes with some periodicities, the non-time-varying component could vary with the same periods
 - One promising candidate for such periodicities is the 11-year solar cycle (??)
 - Magnetic fields in the convection zone changes \rightarrow convection changes \rightarrow g-mode amplitudes ($A_{n\ell}$) change \rightarrow non-time-varying component in the neutrino flux fluctuation changes
- Such long-period (~ 11 years) variations in the solar neutrino flux are not confirmed yet...

Yoshiki Hatta, 20250704

