Solar neutrino measurements with Borexino and prospects for future detectors

WE Heraeus Seminar Interdisciplinary Physics of the Sun Bad Honnef, 4 July 2025 Michael Wurm JGU Mainz/PRISMA⁺

Neutrinos as astrophyiscal probes

- **pro:** neutrinos are (nearly) mass-less, charge-less elementary particles that only interact extremely weakly with matter
 - \rightarrow ideal probes to investigate the interior of astrophysical objects like
 - Supernova explosions
 - cosmic accelerators
 - o the Earth's interior
 - o our Sun

Neutrinos as astrophyiscal probes

- pro: neutrinos are (nearly) mass-less, charge-less elementary particles that only interact extremely weakly with matter
 → ideal probes to investigate the interior of astrophysical objects like
 - Supernova explosions
 - cosmic accelerators

a the Earth's interior.

tour Sun

detection is notoriously difficult and requires vast underground detectors with excellent radiopurity

Solar neutrino spectroscopy

→ What can we learn?

>> Inside view of a main sequence star

- hydrogen burning
- conditions of solar interior: elemental composition, temperatures, opacities

>> Investigate neutrino oscillations

- 3-flavor oscillations
- matter effects
- non-standard phenomena

Back-of-the-envelope solar neutrino flux

Net fusion reaction: $4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e}$ [+26.7 MeV]

electromagnetic luminosity $L_{\odot} = 3.85 \times 10^{26} \text{ W}$

neutrino luminosity $L_v \approx 2\% L_{\odot}$

flux at Earth $\Phi_{\gamma} \approx 4 \times 10^{21} / \text{m}^2 \text{s}$ $\rightarrow S_{\gamma} = 1367 \text{ W/m}^2$

Michael Wurm (JGU Mainz)

5

Standard Solar Model (SSM)

INPUTS

- Stellar structure equations
- Equation of state, plasma physics
- Nuclear physics
- Elemental abundances, opacity of solar matter
- Surface observations

NEUTRINO STRONOMER Solar neutrinos in BOREXINO → see talks by Francesco Villante Aldo Serenelli

NORMA

ASTRONOMER

я

Overview of the solar pp-chain

Solar neutrino spectrum : pp-neutrinos

- flux predictions based on Standard Solar Model (SSM)
- energy spectra based on nuclear physics/weak interaction

Solar neutrino spectrum : CNO cycle

- flux predictions based on Standard Solar Model (SSM)
- energy spectra based on nuclear physics/weak interaction

Spectral ranges of early solar neutrino experiments

- radiochemical: Gallium, Chlorine
- Water Cherenkov: Kamiokande

 \rightarrow integral measurements

 \rightarrow spectral measurement, high threshold

Predicted vs. observed solar neutrino rates

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(OP)]

Predicted vs. observed solar neutrino rates

Predicted vs. observed solar neutrino rates

Sudbury Neutrino Observatory (SNO) Heavy Water (D₂O) Cherenkov detector

Neutrino masses and mixing

QM: For massive neutrinos ($m_v \le 0.2eV$) with differing masses,

- the three neutrino flavor-eigenstates (taking part in weak interactions)
 - can be a superposition of
- the three mass-eigenstates (propagating through space)
- The relative fractions of mass in flavor states (and vice versa) are described by a 3x3-mixing matrix

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
flavor-
mass-
states
states

PMNS-mixing matrix corresponds to a 3D-rotation between flavor and mass eigenspaces

 \rightarrow cf. CKM-matrix in quark-sector

Solar neutrinos: two-flavor approximation

Solar neutrinos: two-flavor approximation

Michael Wurm (JGU Mainz)

Solar neutrinos in BOREXINO

Solar neutrino oscillations in vacuum and matter

Energy dependence of P_{ee} **before Borexino**

- quite detailed information on the high energy (⁸B) region of the spectrum
- poor information for the sub-MeV regime

Michael Wurm (JGU Mainz)

11

Solar neutrinos in BOREXINO

4.4.4.4.4.4.4.4.

20

91 W

Gran Sasso National

Laboratory

THE A, B AND C OF GRAN SASSO

Experiments at the Gran Sasso National

Borexino Detector Height/Diameter: 18m Target: Scintillator Target mass: 270t ight sensors: 2200 8"-PMTs

<text><text>

91 W

Borexino Detector Height/Diameter: 18m Target: Scintillator Target mass: 270t ight sensors: 2200 8"-PMTs

Michael Wurm (JGU Mainz)

Inside Borexino

Inside Borexino

Inside Borexino

Neutrino detection in liquid scintillator

- much greater light yield than Cherenkov effect (x50)
 → better energy resolution
- efficient purification methods for radioactive contaminants: 10⁻¹⁸ g/g uranium/thorium in LS
 → low energy threshold (pp neutrinos!)
- transparent and cheap \rightarrow large-scale detectors
- energy resolution based on number of detected photons: isotropic emission: ~10⁴/MeV detected: Borexino ~500 pe/MeV JUNO ~1300 pe/MeV
- vertex reco via photon time-of-flight
- but: no (?) directional resolution

Electron recoil signal in Borexino

Fit of residual energy spectrum

Multivariate analysis

- main analysis variable is visible energy → spectral fit
- multivariate analysis includes further variables in analysis fit (first use for pep-v's in 2012)

Radial fit

- distribution of neutrinos (and bulk radioactivity) is flat
- external gamma-rays are concentrated at vessel border

Pulse shape discrimination

- recoil electrons: standard scintillation signal
- β⁺-emitters like ¹¹C feature elongated signal due to positronium formation in ~50% of the cases

Veto for cosmogenic background

Cosmic background levels

- rock shielding: 3500 mwe
- μ rate in Inner Detector: ~3 min⁻¹
- radioisotopes from ¹²C spallation are (mainly) produced in hadronic showers

Main background for pep/CNO v's: ¹¹C

- ${}^{12}C \rightarrow {}^{11}C + n$ [τ(${}^{11}C$)~30min]
 - \downarrow ¹⁰C + e⁺ + v_e
- \rightarrow neutron at production [τ (nH)~250 μ s]
- \rightarrow delayed β⁺ decay signal from ¹¹C
- → visible energy: 1—2 MeV

Expected ¹¹C rate: ~30 d⁻¹

- → signal to background ~1:10 (at best)
- \rightarrow veto based on parent μ is mandatory!

Veto for cosmogenic background

Veto strategy

- likelihood approach ascribing each v/¹¹C candidate with a probability to be a μ-induced radioactive decay
- product of PDFs including
 - visible energy [dE/dx] of the muon
 - neutron multiplicity
 - distance from the muon track
 - distance from next neutron vertex
 - distance from neutron projection point on the muon track

Veto efficiency

\rightarrow ¹¹ C rejection efficiency:	(92 <u>+</u> 4) %
residual life time:	(64.28±0.01) %

 \rightarrow TFC splits data set in a ¹¹C-depleted and a ¹¹C-enriched sample

Michael Wurm (JGU Mainz)

Borexino low-energy solar neutrino results

Borexino's measurement of P_{ee}

- \rightarrow presence of vacuum oscillations at low energies (pp, ⁷Be, pep)
- \rightarrow confirms more precise data in high-energy ⁸B energy range

Borexino's measurement of P_{ee}

- \rightarrow presence of vacuum oscillations at low energies (pp, ⁷Be, pep)
- \rightarrow confirms more precise data in high-energy ⁸B energy range
- \rightarrow more data needed for vacuum-matter transition (1-5 MeV) \rightarrow new physics?

Measurement of CNO neutrinos?

CNO neutrinos in the Borexino spectrum

uranium decay chain

²¹⁰ 83

Poor Metal

Actiniu

Franciur

Rador

Astatin

Thalliun

Mercur

- **CNO signal** mostly covered by other neutrino signals \rightarrow define a narrow Region of Interest
- spectral degeneracy with ²¹⁰Bi β-decays dissolved in scintillator \rightarrow CNO rate mostly extracted by statistical subtraction
- in the absence of convection, ²¹⁰Bi rate can be linked to subsequent ²¹⁰Po decay rate

How to counteract convection in the liquid?

- Thermal insulation of the water tank
- Temperature probes installed
- Active temperature control (i.e. heaters)

→ increase of positive temperature gradient

 \rightarrow convection mitigated

Deriving an upper constraint on ²¹⁰Bi rate

Find 20-ton low-activity region to extract ²¹⁰Po rate

 \rightarrow it is crucial to avoid bias in extracted decay rate!

- 3D paraboloid fit over 2-month periods
- extract z-position of ²¹⁰Po minimum over time
- align paraboloid using previous month's position

First CNO neutrino rate analysis

Directional detection (CID) of solar neutrinos

- Cherenkov and scintillation signals of electron recoils are superimposed in the detector
- Cherenkov signal too weak to be recognized eventby-event, but superimposed angular hit distributions of many events makes surplus Cherenkov ring visible!

→ used for final CNO v result of Borexino [arXiv:2307.14636]

Michael Wurm (JGU Mainz)

Updated result on CNO rate measurement

 \rightarrow **Bx result** favors high values of metallicty

Solar abundances and neutrino rates

Two differing sets of **solar metallicity Z**

- based on analyses of Fraunhofer lines
- cross-checked by helioseismology

→ see talks by Maria Bergemann Aldo Serenelli

Solar abundances and neutrino rates

Two differing sets of **solar metallicity Z**

- based on analyses of Fraunhofer lines
- cross-checked by helioseismology

fusion/neutrino rates depend on Z
 core metallicity
 radiative opacities

Species	$\Delta F_n(Z)$	ΔF_{SSM}	ΔF_{exp}
рр	1.2%	0.6%	11%
pep	2.8%	1.1%	20%
⁷ Be	10%	6%	5%
⁸ B	20%	11%	3%
CNO	38%	16%	_

Comparison to solar neutrino results I

Two differing sets of **solar metallicity Z**

- based on analyses of Fraunhofer lines
- cross-checked by helioseismology

→ fusion/neutrino rates depend on Z

○ core metallicity

 $\,\circ\,$ radiative opacities

Species	$\Delta F_n(Z)$	ΔF_{SSM}	ΔF_{exp}
pp	1.2%	0.6%	11%
pep	2.8%	1.1%	20%
← ⁷ Be	10%	6%	5%
₩ ⁸ B	20%	11%	3%
CNO	38%	16%	_

Comparison to solar neutrino results II

Two differing sets of **solar metallicity Z**

- based on analyses of Fraunhofer lines
- cross-checked by helioseismology

fusion/neutrino rates depend on Z

- core metallicity
- radiative opacities

	Species	ΔF_n (Z)	ΔF_{SSM}	ΔF_{exp}
	рр	1.2%	0.6%	11%
	рер	2.8%	1.1%	20%
	⁷ Be	10%	%	5%
	⁸ B	20%	11%	3%
_	CNO	38%	16%	+42% -24%

Future experiments for solar neutrinos?

- Borexino concluded data taking in 2021, no dedicated experiments on the horizon
- but: there are new low-background experiments <u>also</u> sensitive solar neutrinos
 - SNO+
 - o JUNO
 - LXe-experiments for WIMPs
 - o DUNE, HK
 - Hybrid detectors

What to explore?

- more precise CNO measurement
- P_{ee} vacuum-matter transition region
- precision pp neutrino flux ~1%

SNO+ Experiment

- upgrade of SNO with (loaded) liquid scintillator to search for neutrino-less double-beta decay
- scintillator filled but not yet tellurium-loaded
 → potentially excellent sensitivity to CNO-v's
- SNO site is very deep → low cosmogenic BG
 → sensitivity depends on radiopurity
- few years of data taken but no results yet

Recoil spectrum predicted for SNO+

JUNO Neutrino Observatory

- Iocated in Jiangmen province, southern China
- large liquid scintillator detector scintillator mass : 20,000 t
 sphere diameter : 35 m
 number of 20"-PMTs : 18,000
- construction completed in 2024, currently being filled (60~70%)
- main motivation:
 precision measurement of
 reactor neutrino oscillations
 → sub-% level on osc. parameters
 → neutrino mass ordering
- broad astrophysical program
 - solar neutrinos
 - galactic/diffuse Supernova v's
 - geo-neutrinos
 - dark matter annihilation

Solar neutrinos in BOREXINO

JUNO's solar neutrino sensitivity

- JUNO measures solar neutrinos with the same technique as Borexino
- by comparison, JUNO features x100 larger detection volume and x3 better energy resolution → significant increase in instrumental performance
- \rightarrow under ideal conditions, precision for e.g. ⁷Be-v's ~0.2% and CNO-v's ~10%
- however, scintillator background levels from radioactivity likely higher and more cosmogenic backgrounds due to reduced depth
- \rightarrow stay tuned for first results!

LXe Dark Matter Detectors

- current generation of underground liquid-xenon detectors searches for Dark Matter nuclear recoils (WIMPs)
- in 2024, both XENONnT and Panda-X reported first signs of coherent elastic neutrino-nucleus scattering (CEvNS) from solar ⁸B neutrinos
- both report low-E rate surplusses of 2-3σ significance over background
- NC reaction → no impact of flavor oscillations on detection rates
- next generation of experiments will feature x10 higher target mass
- in addition, will look for electron scatters at tens of keV energies
 → great sensitivity for pp neutrinos on the sub-% level

ionization signal low → low recoil energy

Upcoming long-baseline neutrino detectors

DUNE

- \rightarrow nominal: 4x 10kt LAr-TPCs
- \rightarrow optimized for much higher (GeV+) energies
- \rightarrow but some potential to first detect hep neutrinos

Hyper-Kamiokande

- → giant water-Cherenkov detector with target mass ~250 kt
- \rightarrow optimized for higher energies
- → high-statistics measurement of ⁸B neutrinos, especially day-night effect from Earth matter

JIKKEN SEKKE

New ideas using advanced scintillators

taken from THEL

Organic liquid scintillators can be modified to enhance their sensitivity to solar neutrinos:

THEIA

hybrid detection of Cherenkov and scintillation photons

- transparent/slow scintillator
- fast or wavelength-sensitive light sensors
- Li-loading of scintillator for CC interaction
- \rightarrow substantially improved background discrimination
- \rightarrow e.g. CNO neutrino flux at better than 10%

SERAPPIS

upgrade of existing small (20t) detector (e.g. JUNO's pre-detector OSIRIS) for high light collection and ¹⁴C-depleted scintillator

- reduced background levels and better spectral separation for pp neutrinos
- → 1%-level pp measurement to check solar luminosity constraint
- \rightarrow emission of feebly interacting particles

Conclusions

After discovering neutrino oscillations, solar neutrinos are useful probes of the solar interior

Measurements of pp-chain and especially CNO neutrinos are sensitive to solar (core) metallicity

State-of-the-art are liquid-scintillator detectors like Borexino, with SNO+ and JUNO on the horizon

While there are no dedicated solar neutrino experiments planned, many upcoming experiments potentially offer sensitivity: DUNE, HK, XLZD, ...

→ path towards more precise measurements of solar neutrino rates!

The catalyst CNO cycle

Net fusion reaction: $4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e}$ [+26.7 MeV]

- minor contribution to solar fusion (~1%)
- dominant in heavier and older stars
- relatively large uncertainties in nuclear cross sections

Astrophysical neutrino sources

Supernova neutrinos collapse of Fe core of a heavy (> $8M_{\odot}$) star

Diffuse Supernova neutrinos from all core-collapse SNe throughout the Universe

Extragalactic neutrinos from cosmic accelerators (AGNs, GRBs ...?)

Solar neutrinos pp/CNO fusion chains

> **Cosmic Neutrino Background** from the Big Bang (cf. CMB)

Geoneutrinos radioactive decays of U,Th,K in Earth crust/mantle

Michael Wurm (JGU Mainz)

Energy spectrum of astrophysical v's

Michael Wurm (JGU Mainz)

Observation of solar neutrinos

- Sun proposed as intense neutrino sources in 1960's
- several solar v experiments in the 3-4 decades after: Homestake, Gallex/GNO+SAGE, (Super-)Kamiokande, SNO
- ALL found an overall deficit in electron neutrino (v_e) flux
 → Solar Neutrino Problem
- SNO could finally show that the deficit is caused by neutrino flavor transitions $v_e \leftrightarrow v_{\mu,\tau}$
- the corresponding mechanism is v flavor oscillations

Image of Sun in neutrino light by Super-Kamiokande

Neutrino masses and mixing

The Sudbury Neutrino Observatory (SNO)

- Water Cherenkov detector
 Underground water tank to
 measure neutrino interactions by
 final-state charged particles
- Location: Sudbury mine depth: 2000 m → 6000 mwe
- Target mass: 1 kt of D₂O

Neutrino detection in SNO

10,000 photomultiplier tubes

Detection reactions in heavy water

– sensitive only to v_e

sensitive to all flavors

- mostly v_e , but also $v_{u,\tau}$

 \rightarrow determine total neutrino flux (all flavors) and v_e-flux separately

SNO result: Neutrino flavor conversion

The fluxes measured via the three channels were:

$$\frac{\Phi_{\rm CC} = 1.76 \pm 0.11}{\Phi_{\rm ES} = 2.39 \pm 0.27} \\ \Phi_{\rm NC} = 5.09 \pm 0.62 \end{cases} \right\} \times 10^6 \ \rm cm^{-2} \rm s^{-1}$$

The Standard Solar Model prediction for ⁸B- ν 's is:

 $\Phi_{\rm SSM} = (5.05^{+1.01}_{-0.81}) \times 10^6 \ \rm cm^{-2} s^{-1}$

- → The survival probability for ν_e measured in (CC) channel is $P_{ee} \approx 35 \%$.
- → The overall neutrino flux of (NC) corresponds to the SSM prediction as ν_e converted to $\nu_{\mu,\tau}$ still contribute to the (NC) rate.

Nobel Prize in Physics 2015

Solar neutrinos: vacuum oscillation pattern

