

Understanding Solar Opacity: Fundamentals, Theoretical Foundations, and Experimental Validation

Taisuke Nagayama

Interdisciplinary Physics of the Sun June 29 – July 4, 2025 Physikzentrum Bad Honnef, Germany

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2025-06377C

Opacity quantifies photon absorption in matter

3 photons are *absorbed* due to its *opacity*, κ .

Opacity quantifies photon absorption in matter

3 photons are *absorbed* due to its *opacity*, κ .

Opacity is a complex function of photon frequency Opacity is essential for understanding how energy is transported via radiation 2.

Opacity quantifies photon absorption in matter

3 photons are *absorbed* due to its *opacity*, κ .

Opacity is a complex function of photon frequency Opacity is essential for understanding how energy is transported via radiation 2.

$-\nabla T$ (LTE, diffusion limit)

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

- **Basics:** Rosseland mean opacity 1.
 - Derivations, assumptions, and complexity
 - If RMO is wrong: \bullet
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- **2.** <u>Theory</u>: How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Worldwide opacity collaborations will soon help quantify the true accuracy of calculated element opacities

Photon wavelength

Caution1: When I say "opacity," I often mean "absorption coefficient".

More fundamental quantity for photon absorption.

e.g.,
$$q_R = -\frac{16\sigma T^3}{3\kappa_R} \nabla T$$

Convenient quantity for plasma simulations

$$q_R = -\frac{16\sigma T^3}{3\kappa_R^{op}\rho}\nabla T$$

Caution2: I use photon frequency, energy, and wavelength interchangeably

Photon wavelength, photon frequency, and photon energy are all related:

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

- **Basics:** Rosseland mean opacity 1.
 - Derivations, assumptions, and complexity
 - If RMO is wrong: \bullet
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- **2.** <u>Theory</u>: How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Worldwide opacity collaborations will soon help quantify the true accuracy of calculated element opacities

Photon wavelength

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

Opacity

pacity

Theor

- **Basics:** Rosseland mean opacity
 - Derivations, assumptions, and complexity
 - If RMO is wrong: \bullet
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- 2. <u>Theory</u>: How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Photon wavelength

Why can we approximate radiative heat flux q_R using Rossleand-mean opacity κ_R^*

Why?

$$q_R = -\frac{16\sigma T^3}{3\kappa_R}\nabla T$$

Necessary steps for computing q_R

- 1. Line integration (or radiation transport) $\rightarrow I_{\nu}$
- 2. Angular integration $\rightarrow q_{\nu}$
- 3. Spectral integration $\rightarrow q_R$

$$q_R = \int q_\nu \, dh\nu$$

*In this presentation, opacity has a unit of 1/cm.

Step1. Solving radiation transport equation

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Step1. Change of variable: $x \rightarrow \tau_{\nu}$ $(d\tau_{\nu} = \kappa_{\nu} dx)$ Distance from surface \rightarrow Optical depth from surface Step2. Solve for $I_{\nu}(\tau_{\nu})$ Step3. Diffusion limit ($\tau_{\nu} \gg 1$) Step4. Change of variable: $s = \tau_{\nu} - t$ Step5. First order Taylor expansion on $B_{\nu}(\tau_{\nu} - s)$

$B_{\nu} = \frac{\epsilon_{\nu}}{\kappa_{\nu}}$... Blackbody

 (τ_{ν})

Step1. Solving radiation transport equation

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

This provides angle (μ) dependent emergent intensity.

From surface: $\mu=1 \rightarrow I_{\nu}(\tau_{\nu}) \approx B_{\mu}$

From core: $\mu = -1 \rightarrow I_{\nu}(\tau_{\nu}) \approx B$

From top: $\mu=0 \rightarrow I_{\nu}(\tau_{\nu}) \approx B_{\nu}(\tau_{\nu})$

$B_{\nu} = \frac{\epsilon_{\nu}}{\kappa_{\nu}}$... Blackbody

 (τ_{v})

$$e_{\nu}(\tau_{\nu}) - \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$
$$e_{\nu}(\tau_{\nu}) + \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Step2. Compute spectral flux by integrate it over all solid angle

 $\mu = 0$ Surface Core τ_{ν} =0 τ_{ν}

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = \int_{4\pi} I_{\nu}(\tau_{\nu}, \hat{n}) \, \hat{n} \, d\Omega$$

$B_{\nu} = \frac{\epsilon_{\nu}}{\kappa_{\nu}}$... Blackbody

 (τ_{v})

Step2. Compute spectral flux by integrate it over all solid angle

 $\mu = 0$ Surface Core τ_{ν} =0 τ_{ν}

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = 2\pi \int_{-1}^{1} \mu \left[B_{\nu} - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}} \right] d\mu$

$B_{\nu} = \frac{\epsilon_{\nu}}{\kappa_{\nu}}$... Blackbody

 (τ_{ν})

Step2. Compute spectral flux by integrate it over all solid angle

 $\mu = 0$ Surface Core τ_{ν} =0 τ_{ν}

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:
$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

$B_{\nu} = \frac{\epsilon_{\nu}}{\kappa_{\nu}}$... Blackbody

 (τ_{ν})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = \int q_{\nu} d\nu$$

 (τ_{ν})

·ν

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = -\frac{4\pi}{3} \int \frac{dB_v}{d\tau_v} dv$$

 (τ_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = -\frac{4\pi}{3} \int \frac{dB_v}{d\tau_v} dv$$

 (τ_{ν})

·ν

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

 (τ_{ν})

 $d\tau_{\nu} = \kappa_{\nu} dx$

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

 (τ_{v})

 $d\tau_{\nu} = \kappa_{\nu} dx$

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency $q_R = -\frac{4\pi}{3} \int \frac{1}{\kappa_\nu} \frac{dB_\nu}{dx} d\nu$

 (τ_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency $q_R = -\frac{4\pi}{3} \int \frac{1}{\kappa_{\nu}} \left[\frac{dB_{\nu}}{dx} \right] d\nu$

 (τ_{ν})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency 1

$$q_R = -\frac{4\pi}{3} \int \frac{1}{\kappa_v} \left[\frac{dB_v}{dT} \frac{dT}{dx} \right] dv$$

 (au_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

 (τ_{ν})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency $q_{R} = -\frac{4\pi}{3} \int \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu \frac{dT}{dx}$

 (τ_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency $q_R = -\frac{4\pi}{3} \int \frac{1}{\kappa_\nu} \frac{dB_\nu}{dT} d\nu \frac{dT}{dx}$

 (τ_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = -\frac{4\pi}{3} \left[\int \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu \right] \frac{dT}{dx}$$

 (τ_{ν})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_{R} = -\frac{4\pi}{3} \frac{\left[\int \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu\right]}{\int \frac{dB_{\nu}}{dT} d\nu} \int \frac{dT}{dt} d\tau$$

 (τ_{v})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency

$$q_{R} = -\frac{4\pi}{3} \frac{\left[\int \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu\right]}{\int \frac{dB_{\nu}}{dT} d\nu} \int \int \frac{dB_{\nu}}{dT} d\nu$$

 (τ_{ν})

 $4\sigma T^3/\pi$ dT

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency

 $\frac{dB_{\nu}}{dT}d\nu$ $\frac{4\pi}{3}$

 (τ_{v})

 $4\sigma T^3/\pi$ $\frac{dT}{dx}$

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency $1/\kappa_R$ $q_{R} = -\frac{4\pi}{3} \frac{\left[\int \frac{1}{\kappa_{\nu}} \frac{dB_{\nu}}{dT} d\nu\right]}{\int \frac{dB_{\nu}}{\sqrt{T}} d\nu} \int \frac{dB_{\nu}}{dT} d\nu \frac{dT}{dx}$

 (τ_{ν})

 $4\sigma T^3/\pi$

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = -\frac{16\sigma T^3}{3\kappa_R} \nabla T$$

 (τ_{ν})

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux: $q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$

Integrate over all frequency

$$q_R = -\frac{16\sigma T^3}{3\kappa_R} \nabla T \quad \text{where } \frac{1}{R}$$

Radiation transport equation

$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau}$$

Compute spectral flux:

$$q_{\nu} = -\frac{4\pi}{3} \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

Integrate over all frequency

$$q_R = -\frac{16\sigma T^3}{3\kappa_R} \nabla T \quad \text{where } \frac{1}{R}$$

 (τ_{ν})

Radiative heat flux with Rosseland-mean opacity is accurate at solar interior

$$q_R = -\frac{16\sigma T^3}{3\kappa_R}\nabla T$$
 where $\frac{1}{\kappa_R} \equiv \int \frac{1}{\kappa_\nu} w_\nu d\nu$ and $w_\nu \propto \frac{4}{\kappa_R}$

Assumptions:

• $S_{\nu} \equiv \epsilon_{\nu} / \kappa_{\nu} \approx B_{\nu}$ \rightarrow LTE $dR(\tau)$

•
$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{\alpha D_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

 \rightarrow Far enough from surface ($\tau_{\nu} \gg 1$)

 \rightarrow The gradient is linear over the photon absorption length

These are valid assumptions at solar interior

 dB_{v} dT

Radiative heat flux with Rosseland-mean opacity is accurate at solar interior Correct for solar interior

$$q_R = -\frac{16\sigma T^3}{3\kappa_R}\nabla T$$
 where $\frac{1}{\kappa_R} \equiv \int \frac{1}{\kappa_\nu} w_\nu d\nu$ and $w_\nu \propto \frac{1}{\kappa_R}$

Assumptions:

• $S_{\nu} \equiv \epsilon_{\nu} / \kappa_{\nu} \approx B_{\nu}$

•
$$I_{\nu}(\tau_{\nu},\mu) \approx B_{\nu}(\tau_{\nu}) - \mu \frac{dB_{\nu}(\tau_{\nu})}{d\tau_{\nu}}$$

 \rightarrow Far enough from surface ($\tau_{\nu} \gg 1$)

 \rightarrow The gradient is linear over the photon absorption length

These are valid assumptions at solar interior

 dB_{v} dT

Radiative heat flux with Rosseland-mean opacity is accurate at solar interior

These are valid assumptions at solar interior

Radiative heat flux with Rosseland-mean opacity is accurate at solar interior

 \rightarrow The gradient is linear over the photon absorption length

These are valid assumptions at solar interior

Challenge #1: Important spectral range depends on radius

Challenge #2: Low opacity regions are important

Challenge #3: Solar opacity depends on abundance and element opacity.

Challenge #3: Solar opacity depends on abundance and element opacity.

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

Opacity

pacity

Theor

- **Basics:** Rosseland mean opacity
 - Derivations, assumptions, and complexity
 - If RMO is wrong: \bullet
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- 2. <u>Theory</u>: How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Photon wavelength

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

- **Basics:** Rosseland mean opacity
 - Derivations, assumptions, and complexity
 - If RMO is wrong:
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- **Theory:** How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Let's take a closer look at a couple of opacity spectra ...

What are:

- K-shell, L-shell?
- Bound-bound, bound-free? •

Why is opacity calculation difficult with many bound electrons?

Opacity calculation becomes more challenging as the number of bound electrons increases

How is opacity computed?

Let's start with a general picture and elaborate it a little more ...

Spectrum is the result of the *energy level structure*, rates of atomic processes, and population

Spectrum is the result of the *energy level structure*, rates of atomic processes, and population

Spatial picture

atomic processes, and population

atomic processes, and population

How is opacity computed?

Opacity is computed from first principle ...

Three ingredients:

- 1: Atomic physics (ϵ_i , ψ_i , f_{ij} , σ_{ij})
- 2: Spectral line shapes (ϕ_{ij})
- 3: Equation of state (f_i)

Atomic absorption cross-section What atomic states are populated?

 \rightarrow Combine them all to get element spectral opacity

Ingredient 1: Compute atomic data ϵ_i , ψ_i , f_{bb} , and $\sigma_{bf}(E)$

(1) Solve Schrödinger equation for each atomic state *i*

$$H_i\psi_i=\epsilon_i\psi_i$$

 ϵ_i = state energy ψ_i = state wavefunction

(2) Compute *oscillator strengths* for each bound-bound transition, f_{hh}

$$f_{bb'} \propto |\langle \psi_{b'} | r | \psi_b \rangle|^2$$

(3) Compute *bound-free cross-section*

$$\sigma_{bf}(h\nu) \propto \left| \langle \psi_f | r | \psi_b \rangle \right|^2$$

Atomic structure code*

ollision code**

$\sigma_{bf}(h\nu)$

Ingredient 2: Incorporate spectral line shape to get boundbound atomic absorption cross-section

- σ_{bb} , (hv) and $\sigma_{bf}(hv)$ are atomic absorption cross-section in cm²
- We need to know how many atoms are in such initial states (#/cm³)

Ingredient 3: Determine the population using the Saha equation and Boltzman distribution \rightarrow Depends on T_e and n_e

1) <u>Saha equation</u>: across the charge states

$$\frac{f_f}{f_b} \propto \frac{\exp(-\Delta E/T_e)}{n_e} \qquad \Delta E = \epsilon_f - \epsilon_b$$

2) **Boltzmann distribution:** within the charge states

$$\frac{f_{b\prime}}{f_b} \propto \exp(-\Delta E/T_e) \qquad \Delta E = \epsilon_{b\prime} - \epsilon_b$$

3) Normalize it:

$$\sum_{i} f_i = 1$$

 $f_{b'}$

 f_b

Combine: Opacity spectrum is computed by (initial state population) x (cross-section)

Energy level structure

$$\kappa_{\nu}(h\nu) = \sum_{bf} n_{ion} f_b \sigma_{bf}(h\nu)$$

* Precisely speaking, this is attenuation (absorption, extinction) coefficient. Opacity is this divided by mass density.

Combine: Opacity spectrum is computed by (initial state population) x (cross-section)

Energy level structure

$$\kappa_{\nu}(h\nu) = \sum_{bf} n_{ion} f_b \sigma_{bf}(h\nu) + \sum_{bb'} n_{ion} f_b \sigma_{bb'}(h\nu)$$

* Precisely speaking, this is attenuation (absorption, extinction) coefficient. Opacity is this divided by mass density.

Opacity calculations become extremely difficult at high-energy density (HED).

High temperature, High density

HED theoretical challenge 1: It involves many excited states

HED theoretical challenge 1: It involves many excited states

Ionization by the Saha equation $\frac{n_{i+1}}{\Delta E/T_e} \propto \frac{\exp(-\Delta E/T_e)}{\Delta E/T_e}$ n_i n_{ρ}

- Increasing temperature promotes ionization
- Increasing density promotes recombination

HED plasma can have similar ionization to low temperature, low density plasma, but ...

- Significant population in excited states!
- **Complete inclusion of excited states is crucial**

Opacity contribution from ground states are relatively simple

Sandia National Laboratories

64

Contribution from excited states significantly adds complexity In Sandia Laboratories

65

complicate modeling **High density alters the atomic structure Ionization Potential** Depression Low density ΔE_{IPD} Ionization Binding energy Binding energy energy, I_p lons are far

lons are close

HED theoretical challenge 2: HED effects (density effects)

HED theoretical challenge 2: HED effects (density effects) complicate modeling

High temperature introduces randomness in perturbation

HED effects complicates ionization calculation and line-broadening calculation

Opacity is computed from first principles but has many approximations to be validated

Atomic structure code and collision code

- Is energy-level structure correct? ϵ_i, ψ_i
- Are oscillator strengths and cross-sections correct? $f_{bb'}$, σ_{bf}

Equation of state f_i

- Contain enough excited states?
- Correct ionization potential depression (IPD)?
- Correct treatment of partial level depression (or occupation probability)?

<u>Spectral line shapes</u> $\phi_{ij}(hv)$

• Correct line broadening?

Any missing physics?

- Higher-order absorption
- etc

Best way to validate opacity models \rightarrow Measure element spectral opacity

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

- **Basics:** Rosseland mean opacity
 - Derivations, assumptions, and complexity
 - If RMO is wrong:
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- **Theory:** How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

Burn-through experiments may help constrain Rosseland-mean opacity, but *its usefulness is limited*.

Limitations: We cannot conclude what the agreement/disagreement truly mean

- **Highly integrated:** Simulation depends on *opacity*, EOS, incident radiation, T_e, n_e as (z, t)
- **Checking sum:** This does not check spectral opacity in detail
- Little relevance to the sun: Fe Rosseland mean ≠ Solar Rosseland mean \bullet

Burn-through experiments may help constrain Rosseland-mean opacity, but *its usefulness is limited*.

Burn-through experiments may help constrain Rosseland-mean opacity, but *its usefulness is limited*.

Burn-through experiments may help constrain Rosseland-mean opacity, but *its usefulness is limited*.

Burn-through experiments may help constrain Rosseland-mean opacity, but *its usefulness is limited*.

Limitations: We cannot conclude what the agreement/disagreement truly mean

- **Highly integrated:** Simulation depends on *opacity*, EOS, incident radiation, T_e, n_e as (z, t)
- **Checking sum:** This does not check spectral opacity in detail
- Little relevance to the sun: Fe Rosseland mean ≠ Solar Rosseland mean \bullet

Element spectral opacity measurements are necessary to test opacity models

The Z machine uses 27 million Amperes to create x-rays

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)

The Z x-ray source both heats and backlights samples to stellar interior conditions.

Sample is:

- Heated during plasma implosion
- **Backlit at plasma stagnation**

Fe opacity sample

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)

High-temperature Fe opacities are measured using the Z-Pinch opacity science platform

High-temperature Fe opacities are measured using the Z-Pinch opacity science platform

High-temperature Fe opacities are measured using the Z-Pinch opacity science platform

Opacity models disagree with the Z iron data as the condition approaches the solar CZB conditions

Sandia National

Experiments: We have investigated potential sources of systematic errors experimentally and/or numerically

Possible systematic errors in

- **Opacity data analysis**
- -Temperature and density diagnostics
- Sample areal density
- Non-uniformity
 - <u>Temporal gradients</u>
 - Spatial gradients
- Self-emission-
- Background
- Impact of tamping material

Data analysis was refined, which made notable changes to the model-data comparison

Experimental

Numerical

Challenge at Z: Backlight intensities measured along different lines of sight is off by ±15%

[1] Bailey et al., Phys Plasmas 16, 058101 (2009)

Z opacity measurements were refined by developing a statistical analysis method

Asymmetric non-Gaussian opacity PDF*

- Large volume of backlight-only data statistics
- Monte Carlo for robust errors propagations
 - Backlight intensity, B_{ν}
 - Background, ϵ_{ν}
 - Sample areal density, ρL

Reanalysis revealed that the half of the experimental variation was caused by insufficient accuracy of analysis method.

New experiments and analysis reduced the model-discrepancy for Anchor 2 iron, but ~ 3-10 σ differences remain

<u>Quasi continuum discrepancy</u> 2015: ~1800 cm2/g; ~4σ 2020: ~960 cm2/g; ~3σ

<u>Window discrepancy</u> 2015: ~ 2900 cm2/g; ~ 5σ 2020: ~ 2700 cm2/g; ~ 10σ

Theory: We have investigated many of possible limitations in the existing opacity theory

Possible limitations

- Accuracy in atomic data?
- Sufficient # of excited states?
- Accuracy in spectral line shapes?
- Missing physics
 - Two photon opacity
 - Transient space localization
- More

- Significant investigations done by both theory and experiment teams
- The scrutiny will continue until the model-data discrepancies are removed

An independent experimental method is being developed at National Ignition Facility (NIF)

Perry et al PRL (1991); Perry et al HEDP (2017)

Advantages:

- Hohlraum sample heating
- Easier determination of I_{ν} , B_{ν} , and ϵ_{ν}
- Secondary T_{e} , n_{e} diagnostics

Challenges:

- Large background and self-emission, ϵ_{ν}
- Lower resolution (can be resolved with film, CMOS)

NIF and Z opacity experiments complement each other and speed up investigations

Other ongoing efforts from SNL and NIF opacity experiments 🛅

NIF:

- Oxygen opacity measured at multiple \bullet conditions
- The data are being analyzed

Time-resolved measurements

UXI detector**

SNL

- Investigate time-integration effects
- Achieve more extreme conditions
- Multiple opacity measurements from a single experiment

NIF

- Achieve higher spectral resolution
- Suppress background and self-emission •

Understanding solar opacity is challenging due to complex nature of Rosseland mean opacity

- **Basics:** Rosseland mean opacity 1.
 - Derivations, assumptions, and complexity
 - If RMO is wrong: \bullet
 - \rightarrow (1) Abundance and/or
 - \rightarrow (2) Calculated element opacity.
- **2.** <u>Theory</u>: How element opacity is computed.
 - Opacity is computed by "first principle"
 - Models contain "untested" approximations
- **3.** Experiments: experiments and future perspective
 - **Experimental challenges**
 - Z and NIF experiments

