

Solar Energetic Particles

Remote sensing and in situ observations

Bernd Heber, Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel, Germany.

Extraterrestrik @ Kiel university

• Kiel was a Hanse-city from 1284 till 1518 living mainly from trade.

- Experienced enormous population growth at the end of 19th century.
- Hosts shipyards, marine sciences, etc.,
- Entrance to the Kiel canal, linking the North Sea to the Baltic.
- Kiel was heavily bombed and nearly completely destroyed during World War II.
- Rebuilt as a modern city thereafter, but only few original houses remain.
- Its current population is roughly ¼
 of a million (35'000 students)

Extraterrestrik @ Kiel university

CAU

Christian-Albrechts-Universität zu Kiel

Well known for Max Planck, Heinrich Hertz, Hans Geiger, and Albrecht Unsöld. (but also for Phillip Lenard...)

About 50 physics majors begin their studies of which about $\frac{1}{2}$ will complete them and ~10 get their PhD.

<u>6 Divisions:</u> Astrophysics, plasma physics, condensed matter physics, surface physics, and theoretical Physics,

The Extraterrestrial Physics Division with some 60 people, incl. students, working on numerous projects (e.g., ACE, Dosimetry, MSL, SOHO, Solar Orbiter, STEREO, Ulysses, AMS 02...).

Charged Particles in the Heliosphere

CAU

From flares to SEPs @Earth

CAU

From flares to SEPs @Earth

CAU

Christian-Albrechts-Universität zu Kiel

Particle injection to IPM Particle transport within the IPM

Particle Acceleration Flare vs Shock

Particle acceleration

CAU

Christian-Albrechts-Universität zu Kiel

Solar flares

energy release and particle acceleration

A simple cartoon scenario: energy release and particle acceleration in the corona, loops underneath (magnetic reconnection)

Particle acceleration

CAU

Christian-Albrechts-Universität zu Kiel

Red: Soft X-ray emission; Blue: Hard X- and γ-rays emission

Particle acceleration

Christian-Albrechts-Universität zu Kiel

Gross distinction:

- short & spiky
- (microwaves¹, HXR)
- long-lasting (Hα, SXR)

Phases of a flare:

- impulsive phase
- main phase/gradual phase

Jan. 29, 2015 solar M-class flare

Christian-Albrechts-Universität zu Kiel

CAU

X-ray measurementsfrom SOHO/EPHINElectron measurements @ same period

- X-ray measurements from SOHO/EPHIN indicate particles are accelerated and interact with the lower corona
- Measurements from SOHO/EPHIN indicates no significant increase in the electron flux.
- No particles escape from the corona?

From flares to SEPs @Earth

CAU

Solar flare but ...

CAU

Christian-Albrechts-Universität zu Kiel

PFSS computation of the coronal solar magnetic files incl. closed field lines

Model of the interplanetary magnetic field

Solar flare but ...

CAU

Sources of SEPs

CAU

Solare Flares, discussed here

SDO/AIA - 13.1 nm 05.05.2015

Shock waves associated with (CMEs)

SOHO/LASCO C2 05.05.2015

TABLE 1. Properties of Impulsive and Gradual Events

	Impulsive	Gradual
Particles:	Electron-rich	Proton-rich
3He/4He	~1	~0.0005
Fe/0	~1	~0.1
H/He	~10	~100
QFe	~20	~14
Duration	Hours	Days
Longitude Cone	<30 deg	~180 deg
Radio Type	III, V (II)	II, IV
X-rays	Impulsive	Gradual
Coronagraph	-	CME (96%)
Solar Wind	-	IP Shock
Events/year	~1000	~10

Impulsive flares

Solare Flares, discussed here

- Thought to be a result of flare acceleration only
- Characteristics
 - ³He/⁴He enhanced by large factors (x10⁴)
 - Enhanced Ne-Si and Fe over CNO as compared to gradual SEP events
 - Enhancement of 'ultra heavy' ions (Z ≥ 30)
 - electron rich
 - small intensities and short duration (flares and SEPs)

Impulsive flares: ³He importance

CAU

Christian-Albrechts-Universität zu Kiel

Mason et al., 2002

TABLE 1. Properties of Impulsive and Gradual Events

	Impulsive	Gradual
Particles:	Electron-rich	Proton-rich
3He/4He	~1	~0.0005
Fe/0	~1	~0.1
H/He	~10	~100
QFe	~20	~14
Duration	Hours	Days
Longitude Cone	<30 deg	~180 deg
Radio Type	III, V (II)	II, IV
X-rays	Impulsive	Gradual
Coronagraph	-	CME (96%)
Solar Wind	-	IP Shock
Events/year	~1000	~10

Longitude distribution of SEP

events: flares vs. CMEs

 W60: Particles only from the Corona

- W30: Particles from the corona plus ESP.
- E30: Only ESP's
- E60: Only ESP's transported in the IPM reach the spacecraft

Transport in the IPM

C|A|U

The simplest model of transport applicable to the IPM conditions assumes static magnetic fluctuations superposed on a Parker IMF. In addition the effect of adiabatic focusing (mirroring) has to be taken into account

$$\dot{\mu} = \frac{1-\mu^2}{2L}v \quad \frac{1}{L} = -\frac{\partial \ln B}{\partial Z}$$

$$\frac{\partial F}{\partial t} + v\mu \frac{\partial F}{\partial Z} + \frac{1-\mu^2}{2L} v \frac{\partial F}{\partial \mu} = \frac{\partial}{\partial \mu} \left(D_{\mu\mu} \frac{\partial F}{\partial \mu} \right)$$

Focused transport equation

Velocity dispersion: No scattering

CAU

Velocity dispersion: No scattering

CAU

Application:

For well connected events the inversion of the focused transport equation we can derive the injection function that can be compared to radio measurements: Works for STEREO/Wind/Solar Orbiter

Correlation X-ray spectra and wellconnected events (Krucker, Dresing, ...)

- Well connected: Type III reaches local plasma frequencies.
- Prompt events rapid rise strong anisotropies

Correlation X-ray spectra and wellconnected events (Krucker, Dresing, ...)

- Well connected: Type III reaches local plasma frequencies.
- Energy spectra of photons from RHESSI
- Energy spectra form Wind 3DP or STEREO SEPT

Correlation X-ray spectra and well-connected, prompt events (Krucker, Dresing, ...)

Number of escaping electrons

Spectral index

The REIeASE scheme: How it works

CAU

Christian-Albrechts-Universität zu Kiel

Electrons:

1 MeV -> 0.94c -> Travel time 10.6 min

Protons:

30 MeV \rightarrow 0.25c \rightarrow Travel time 40 min

50 MeV \rightarrow 0.31c \rightarrow Travel time 32 min

It is operational since 20 day Time Interval [min]

Dröge, Heber, STEREO REleASE, 6 NWWW, Neustreliz

C|A|U

Christian-Albrechts-Universität zu Kiel

STEREO HET electrons STEREO HET protons Electrons shifted by 38 minutes

Electron-proton-flux correlation

Correlation of electron proton increase rate

Dröge, Heber, STEREO REleASE, 6 NWWW, Neustreliz

EleASE scheme: Computation of Forecast Matrix

Christian-Albrechts-Universität zu Kiel

STEREO HET protons Electrons shifted by 38 minutes

Matrix from 15 years of STEREO HET (electrons and protons)

Dröge, Heber, STEREO REIeASE, 6 NWWW, Neustreliz

Velocity dispersion: No scattering

CAU

Christian-Albrechts-Universität zu Kiel

The longitudinal distribution of anisotropies

X

Traveling to Moon and Mars

Trips to the Moon and especially to Mars are long duration flights

Dose contribution by Galactic Cosmic Rays (GCRs) as well as Solar Energetic Particles.

Orbit to and from Mars in a coordinate system with Sun-Earth fixed.

CAU

From September to December 2024 Mars and STEREO A are ahead of the Earth

STEREO A, SOHO and Mars events: Overview

CAU

Christian-Albrechts-Universität zu Kiel

5 SEPE's @MSL/RAD @70 MeV protons

- 10 SEPE's
 @STEREO A
- 9 SEPEs @SOHO

@300 MeV protons

4 SEPEs @SOHO

Propagation tool plus hard X-ray and radio observations can lead:

- 1. To the derivation of the injection spectra of electrons (timing and spectral shape)
- 2. Propagation tool can predict the expected electron onset for different particle propagation conditions.
- 3. Tracking the pitch angle resolved measurements narrows the propagation parameters
- 4. Correlation studies for protons allow to estimate the proton onset and the flux increase.

Instrumentation of Solar Orbiter is ideally suited to do so. So L4 should be able to fulfill this too.

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

(Kollhoff et al. 2021)

> Shock propagation in the corona can not explain the injection > Anisotropies are important for understanding the propagation

SolO/EPT & HET

29. Nov. 2020 SEP-Event – Anisotropies

