

Observations of Solar Magnetic Activity

Carsten Denker and Meetu Verma

Abstract. The solar magnetic field drives solar activity on a wide range of spatial and temporal scales and with different morphologies throughout the solar atmosphere, from the photosphere and chromosphere to the transition region and corona. High-resolution observations of the solar magnetic field now provide access to the fundamental scales at which hot plasma and magnetic fields interact. Ground-based solar telescopes with aperture diameters larger than one meter and their advanced instruments have provided many case studies covering all facets of solar activity. This review focuses on high-resolution photospheric and chromospheric observations, linking them to synoptic observations and bridging the gap in spatial and temporal coverage.

Motivation

- Large-aperture telescopes
 - 1.7-meter Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) in California \rightarrow 2009
 - 1.5-meter GREGOR solar telescope at Observatorio del Teide, Tenerife, Spain \rightarrow 2012
 - 4-meter Daniel K. Inouye Solar Telescope (DKIST) at Haleakala Observatory, Maui, Hawaii \rightarrow 2019
 - 4-meter European Solar Telescope (EST)
- 15 years of high-resolution solar observations (one telescope every 5 years)
- Overview of scientific work with a focus on solar magnetic activity
- Only selected studies will be presented.
- High-resolution observations from other telescopes are missing
 - 1-meter Swedish Solar Telescope (SST)
 - 1-meter balloon-borne SUNRISE telescope
 - 0.7-meter Vacuum Tower Telescope (VTT)
 - 0.5-meter Solar Optical Telescope (SOT) onboard the Hinode mission

Sunspots and Pores

Observations of Solar Magnetic Activity | Carsten Denker

Magnetic Field Oscillations in a Pore

- GREGOR Infrared Spectrograph (GRIS) _ \rightarrow IFU Fe I λ 1564.85 nm line (SIR)
- Localized (<1") oscillations of 100+ G and longer (600+ s) _ amplitude (200+ G) variations

3

0

-3

GREGOR

Horizontal Flow Fields in and around an Active Region

- Blue Imaging Channel (BIC) at GREGOR \rightarrow Fraunhofer G-band
- Helioseismic and Magnetic Imager (HMI) \rightarrow LOS magnetic field
- Local correlation tracking (LCT) and differential affine velocity estimator (DAVE) \rightarrow horizontal proper motions during emergence and decay of a small active region

Verma et al. 2016, A&A 596, A3

- Growth rates for photometric area, magnetic area, and magnetic flux are twice as high as the respective decay rates.
- Diverging feature indicates flux emergence and upwelling plasma.

GREGOR

Magnetic Flux Transport in a Decaying Sunspot

- GST Near Infra- Red Imaging Spectro-polarimeter (NIRIS) \rightarrow LOS magnetic field
- GST Visible Imaging Spectrometer (VIS) \rightarrow H α imaging spectroscopy
- − GST Broadband Filter Imager (BFI) \rightarrow TiO λ706 nm
- Area and total magnetic flux \rightarrow exponential decrease during decay
- Moving magnetic features (MMFs) \rightarrow sunspot decay through diffusion

2016-08-25T 18:49:17

120

Supersonic Downflows in Active Regions

- GREGOR Infrared Spectrograph (GRIS) → He I λ 1083.0 nm (HeLIx⁺) lines
- Supersonic downflows (0.2–6.4% area fraction) more prominent in the emerging phase \rightarrow rising magnetic loops

Sowmya et al. 2022, A&A 661, A122

Sunspot Umbra

- GREGOR Fabry-Pérot Interferometer (GFPI) \rightarrow Fe I λ 543.5 nm line and GREGOR Infrared Spectrograph (GRIS) \rightarrow Si I λ 1082.7 nm, Ca I λ 1083.9 nm, He I λ 1083.0 nm lines

Felipe et al. 2018, A&A 621, A43

- Wave modes determined by thermal and magnetic sunspot structure
- Two-armed spiral wavefronts, outward propagating running penumbral waves → slow magnetoacoustic waves

GREGOR

Umbral Flashes

- DKIST Visible Spectro-Polarimeter (ViSP) → Fe I λ630.2 nm, Ca II H λ396.8 nm, and Ca II λ854.2 nm
- oscillatory "ridge" structures \rightarrow intensity, central wavelength, line width, and linear and circular polarization
- Chromospheric 3-minute umbral oscillations
- Mach numbers (≈2) and speed (≈9 km s⁻¹) → magnetic field ($\Delta B \approx 50$ G), gas pressure, and temperature ($\Delta T/T \approx 0.1$)

Upper Chromospheric Magnetic Field of a Sunspot Penumbra

- GREGOR Infrared Spectrograph (GRIS) → Si I λ1082.7 nm and Ca I λ1083.9 nm (SPINOR) and He I λ1083.0 nm (HeLIx⁺) lines
- Chromospheric variations coincide with variations in the inclination of the photospheric field
 - → spine and interspine magnetic field structure
- log τ = 0.0, -0.7, --2.3
 and HeLIx+ (left to right)

Light Bridges

Observations of Solar Magnetic Activity | Carsten Denker

Pores with Light Bridges

- GST Broadband Filter Imager (BFI) → TiO λ 706 nm
- GST Visible Imaging + MaximumSpectrometer (VIS) $\rightarrow \text{H}\alpha$ imaging spectroscopy
- Helioseismic and Magnetic Imager (HMI) \rightarrow LOS magnetic field
- Pores show photospheric inflows while light bridges show outflows
- Strong radial chromospheric outflows at superpenumbral scales
- Border of pores and light bridges show strong variations
- Flux system connected to the surrounding supergranular cell

Kamlah et al. 2023, A&A 675, A182

Sunspot Light Bridge

- GREGOR Infrared Spectrograph (GRIS) → Si I λ 1082.7 nm and Ca I λ 1083.9 nm lines
- Light bridges are linked to sunspot decay → canopy with lower magnetic field strength in the inner part → convective flows → flow bend magnetic field lines and produces field reversals → strong vertical field lines

Disappearing Light Bridge and Penumbral Decay

- GREGOR Infrared Spectrograph (GRIS) \rightarrow Si I λ 1082.7 nm and Ca I λ 1083.9 nm lines (SIR)
- GREGOR Fabry-Pérot Interferometer (GFPI) → Fe I λ 617.3 nm line
- High-resolution Fast Imager (HiFI) \rightarrow G-band and Ca II H

Verma et al. 2018, A&A 614, A2

Penumbra and Light Bridges

 Improved High-resolution Fast Imager (HiFI+) and GREGOR Infrared Spectrograph (GRIS)
 → Si I λ1082.7 nm (SIR) and He I λ1083.0 nm lines

Kamlah et al. 2024, Sol. Phys. 299, 144

17 | Observations of Solar Magnetic Activity | Carsten Denker

GREGOR

Leibniz-Institut für Astrophysik Potsdam (AIP)

Flares

Observations of Solar Magnetic Activity | Carsten Denker

Flare-ejected Plasma Impacts on a Sunspot Light Bridge

- − GREGOR Fabry-Pérot Interferometer (GFPI) → Fe I λ 617.3 nm line
- High-resolution Fast Imager (HiFI) \rightarrow G-band and Ca II H
- GREGOR Infrared Spectrograph (GRIS) \rightarrow Fe I λ 1565.5 nm lines
- C-class flare → photospheric and chromospheric brightenings, heating events, and Stokes-profiles
- Reconnection moves plasma blob along field lines interacting impacting a light bridge.

1.0 Y (arcsec) 0.9 13 0.8 12 0.7 0.6 6000 15 5500 Y (arcsec) 14 5000 蜜 13 4500 ⊢ 12 11 4000 10 3500 1.5 1.0 0.5 Y (arcsec) 13 0.0 -0.5 > -1.0 10 -1.5 3000 15 2500 Y (arcsec) 14 2000 1500 g 13 12 1000 500 10 16 15 160 140 0 13 12 120 100 22 32 34

19 | Observations of Solar Magnetic Activity | Carsten Denker

GREGOR

Leibniz-Institut für Astrophysik Potsdam (AIP)

X (arcsec)

Recurring Flares

- GST Broadband Filter Imager (BFI) \rightarrow TiO λ 706 nm
- GST Visible Imaging Spectrometer (VIS) \rightarrow H α imaging spectroscopy
- Helioseismic and Magnetic Imager (HMI) \rightarrow LOS magnetic field
- Atmospheric Imaging Assembly (AIA) \rightarrow UV/EUV images
- Four confined flares followed by an eruptive flare, all associated with a jet with a twisted structure at flare peak
- Continuous injection of magnetic twist before and during the series of flares

Pore Rotation and C-class Flare

- − DKIST Visible Spectro-Polarimeter (ViSP) → G-band λ 430.5 nm and Hβ λ 486.1 nm
- − DKIST Visible Spectro-Polarimeter (ViSP) → Fe I λ630.2 nm (ME-SPIN), Na I D₁ λ589.6 nm, and Ca II λ854.2 nm
- − Helioseismic and Magnetic Imager (HMI)
 → LOS magnetic field
- Atmospheric Imaging Assembly (AIA)
 → UV/EUV images
- C4.1-class solar flare
- Complex magnetic field topology above rotating pores, null-point-like configuration
- 30% relative change in the horizontal component (δF_h) of Lorentz force at the flare peak time, no change in the radial component

Yadav et al. 2024, ApJ 973, L10

60

[arcsec]

Filaments

| Observations of Solar Magnetic Activity | Carsten Denke

Arch Filament System

- GREGOR Infrared Spectrograph (GRIS) \rightarrow He I λ 1083.0 nm and Ca I λ 1083.9 nm (SIR) lines
- Fibrils connects opposite polarities, i.e., the sunspot with small-scale fields near the polarity inversion line
- Moderate photospheric downflows are accompanied with stronger chromospheric downflows of about 10 km s⁻¹
- Rising flux tubes lift plasma into the chromosphere, where it cools and drains along the filament to the footpoints

Balthasar et al. 2016, Astron. Nachr. 337, 1050

Emerging Flux Region and Arch Filament System

- GREGOR Infrared Spectrograph (GRIS) → Si I λ 1082.7 nm (ME-SPIN) and He I λ 1083.0 nm (HAZEL) lines
- Complex photospheric magnetic structure and smooth variation of chromspheric magnetic field (height ~2 Mm)
- NFF field extrapolation \rightarrow loop height 10 Mm, loop with 20 Mm

Tauav et al. 2019, A&A 052, A112

Active Region Filament

- GREGOR Infrared Spectrograph (GRIS) → Si I λ 1082.7 nm (SIR) and He I λ 1083.0 nm (HAZEL) lines
- More complex inversions are needed: absence of the filament in the He I Stokes-V map and difficulties in separating active region and filament fields

Díaz Baso et al. 2019, A&A 625, 128

Active Region Filaments and Jets

- GST Visible Imaging Spectrometer (VIS)
 → Hα imaging spectroscopy
- GST Broadband Filter Imager (BFI) → TiO λ 706 nm
- Helioseismic and Magnetic Imager (HMI)
 → LOS magnetic field
- Atmospheric Imaging Assembly (AIA)
 → UV/EUV images
- − Hinode Solar Optical Telescope (SOT)
 → LOS magnetograms and Dopplergrams
- Two-day observation of filament formation
- Cool material (T~10⁴ K) is ejected by a series of jets
- Magnetic reconnection between pre-existing and newly emerging magnetic fields

Wang et al. 2018, ApJ 863, 180

Quiet Sun

Quiet Sun Magnetism

- − DKIST Visible Spectro-Polarimeter (ViSP) → Fe I λ 630.2 nm (SIR)
- Search for the best multi-inversion strategy by means of MHD simulations (MANCHA3D)
- Fe I lines at 1.5 μm offer better diagnostics for quiet-Sun magnetic field observations
- Multiline inversions \rightarrow broad range of excitation potentials, log (*gf*) values, and effective Landé factors $g_{eff} \rightarrow$ diversity improves capacity to accurately retrieve atmospheric structure and magnetic properties

Striated Granular Edges

- DKIST Visible Spectro-Polarimeter (ViSP) \rightarrow G-band
- Proxy magnetometry
- Multidimensional Radiative MHD (MURaM) simulation
- Striation structure widths of 20–50 km \rightarrow spatial variations in photospheric magnetic flux concentrations μ =0.85

Kuridze et al. 2023, ApJ 985, L23

10

Chromospheric Solar Plage

- DKIST Visible Broadband Imager (VBI) \rightarrow H β λ 486.1 nm
- − DKIST Visible Spectro-Polarimeter (ViSP) → Fe I λ 630.2 nm and Ca II λ 854.2 nm
- Inversion indicate dense fibrils in the Ca II λ 854.2 nm line
 → overdense fibrils responsible for spectral line
 broadening of chromospheric fine-scale structures

Spicules and Microfilament Eruptions

- GST Visible Imaging Spectrometer (VIS) \rightarrow H α imaging spectroscopy
- GST Near Infra- Red Imaging Spectropolarimeter (NIRIS) \rightarrow LOS magnetic field
- Hinode Solar Optical Telescope (SOT) \rightarrow Ca II H
- Hinode EUC Imaging Spectrometer (EIS) _ \rightarrow He II λ 25.6 nm
- Erupting microfilaments might drive enhanced spicular activity \rightarrow twistingtype motions of $20-50 \text{ km s}^{-1}$ in the associated jet and 20–30 km s⁻¹ in enhanced specular activity
- Erupting microfilaments are analogues to minifilament eruptions, which are fundamental driver of coronal jets

Sterling et al. 2020, ApJ 893, L45

Distance (arcsecs)

Origin of Type II Spicules

- GST Near Infra- Red Imaging Spectro-polarimeter (NIRIS) → LOS magnetic field
- GST Visible Imaging Spectrometer (VIS) \rightarrow H α imaging spectroscopy
- − GST Broadband Filter Imager (BFI) \rightarrow TiO λ706 nm
- Statistical study of quiet-Sun areas → extrapolate a series of potential field configurations and study their time variations
- Areas with (footpoints of H α features) and without changes in loop connectivity
- Separatrix between open- and closed-loop systems
 → rapid blue- and red-shifted excursions (type II spicules)

Yurchyshyn et al 2024, ApJ 961, 79

Summary

- Many new observations with high spatial, temporal, and spectral resolution and high polarimetric accuracy
- Multi-wavelength and multi-instrument observations are the key ingredients to scientific discovery
- Synergies between space missions and ground-based observations
- − Field-of-view, even with mosaics, still limited
 → telescopes are still needed that bridge the gap between high-resolution and synoptic observations
- A meta-study of high-resolution observations during the last 15 years is missing.

