Small-scale structure
of the lower solar
atmosphere




Outline

A
L
Ged

o |Lower layers of the Sun: Photosphere & Chromosphere

o What means ‘small-scales’ in the Sun?

¢ Solar fine structure — Selected solar features
o Magnetic bright points, faculae & plages

o Spicules & fibrils

o Ellerman bombs and photospheric hot spots

o Sunspots

o Qscillatory phenomena — quiet Sun acoustic ans sunspot waves

© Conclusion



What do | mean by

the lower solar atmosphere?
Photosphere and chromosphere
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What do we mean

by small-scales in the Sun?
The many scales of the Sun




The many scales of the [magnetic] Sun

Active Regions

. Solar cycle Time scale: weeks to months
Time scale: 22 years

Spatial scale: Global Sun

Spatial scale: ~ 200 arcsec

Kareel Schrijver | NSO | NOAO | NSF I NASA | SoHO/MDI Lohner-Botcher (KIS) | SDO/HMI & ROSA/DST
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The many scales of the [magnetic] Sun

Fine structure

Solar cycle . _ .
. Time scale: seconds - minutes
Time scale: 22 years

Spatial scale: Global Sun

Spatial scale: < 1 arcsec

Kareel Schrijver | NSO | NOAO | NSF I NASA | SoHO/MDI Lohner-Botcher (KIS) | SDO/HMI & ROSA/DST
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Observing the solar fine-structure

from the ground
Telescopes & Instrumentation
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European ground-based solar telescopes
O
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Adapted from
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European ground-based solar telescopes

El Roque de Los Muchachos El Teide Observatory
Tenerife

Lecture on

European Solar Telescope
Adapted from by
M. Collados (IAC) &
EST Office i VTT 70cm Themis 90cm
Wed 9:00h @
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European
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(2012)




Other ground-based facilities and space missions

Daniel K. Inouye Telescope 4m
NSO/NSF, Hawaii, Haleakala Observatory

Goode Solar Telescope 1.6m

Sunrise
NJIT | Big Bear Observatory

Balloon-borne solar observatory
MPS
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Space mission Space Sun Observatory Space mission
JAXA/ NASA / PPARC NASA
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High-res solar instrumentation

GOAL: Multi-wavelength/multi-layer imaging and spectro-polarimetric data with high-res

Ca II . XS, C_22pm ™ o
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Observations and simulations

Mag. Field strength  Cotinuum Int. Line-core Int.  Doppler velocities

SIMULATIONS | MURaM, ‘quiet Sun’

Spatially degraded
to VTT resolution

MURaM + Radiative Transfer Vertical cuts

(STOPRO) +

VTT Point Spread Function 100

depth .
mag. field
v strength [G]
—~100
gy Full resolution 6
MURaM + Velocities

Radiative Transfer (STOPRO) [m/s]

Bello Gonzalez et al. (2008)
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Realistic MHD sunspot simulations

Vertical velocities Horizontal velocities Horizontal velocities
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Realistic MHD sunspot simulations
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Solar fine-structure
Selected cases
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Magnetic bright points,
faculae, and
plages




Magnetic Network in
Faculae quiet Sun close to the solar limb
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7 b 4,
Faculae . e
DKIST/VBI observations @?/

o > Faculae

Pete Lawrence
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Kuridze et al. (2025) | DKIST/VBI data

¢ Structures of enhanced brightness visible on the solar surface best seen near the solar limb

¢ Disc-centre counterpart: Magnetic Bright Points of smaller size (due to projection effects)

¢ Magnetic origin: Formed by bundles of strong, concentrated magnetic fields

¢ Hot-wall effect: The intense magnetic field induces an evacuation of plasma, allowing observers to see
slightly deeper, hotter layers of the solar photosphere. This "hot wall" effect is enhanced at the limb due
to viewing angle

¢ Contribution to solar irradiance: Contribute to variations in the Sun's total irradiance, making the Sun
slightly brighter during peak magetic activity



Faculae DKIST/VBI observations Simulations
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Striations

¢ Corrugation at the borders of granules seen as dark, thin stripes along the bright facular regions

¢ Dark stripes are more elevated than bright ones

¢ Widths: Ranging from 17 to 46 km (~0.03 arcsec)

¢ Magnetic origin: Coincide with variations in vertical magnetic field strength (Bz) of 100 to 250 G.
Bz is weaker in the dark striations than in the adjacent bright ones

¢ Also seen: in peumbral filaments



Spicules
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Trajectory Rise and fall — returning material Rapid rise — no fall
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¥ Chromospheric fine multi-threaded
structures visible close to the solar lImb

¥ Best visible in H-alpha and Ca line wings
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SST Observations: spicules (limb)

Spicules — On-disc counterparts

Type lI: Rapid Blue/Red Excursions

% More impulsive energy transfer with

TYPE |I: Dynamic bright fibrils potential for directly injecting heated
plasma or significant wave energy into
? Mostly involved in chromospheric mass cycling the lower corona though their total
% Limited direct energy contribution to the corona impact is still debated

as plasma largely falls back




Ellermann bombs &
hot spots




Ellerman bombs Photospheric hot spots

¢ Enhancement of the H-alpha blue wing ¢ Enhancement of the H-alpha red wing

¢ Ellerman Bombs are typically interpreted as products ¢ Photospheric hot spots are observed in quiet-Sun areas
of magnetic reconnection on the high photosphere |

Mostlv in Active Reqi " T q fl € Interpretation: proxies of locations where convection-driven
© Mostly in Active Regions, where newly emerging flux magnetic field intensification in the photosphere can lead to

reconnects with overlying pre-existinng field energy transfer into higher layers

€ Chitta et al. suggest that such hot spots at coronal loop
SST / Context Ha wideband SST / MiHI footpoints may be indicative of the specific locations and
Ha +0 ks onset of energy flux injection into the upper atmosphere
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Solar tornados



Diaz-Castillo et al. (2024, from Swedish Solar Telescope data)

Magnetic tornados Ha12A _ Ha-06A  _ Haoore
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S X (KM

¢ The swirl extends into the chromosphere, forming a

chromospheric swirl or magnetic tornado. B

B _ . Fischer et al., in preb\
¢ This structure acts as a mass and energy conduit between e om COSBOLD simulations

the photosphere and chromosphere. Ry

Call K
@ Velocity (z=750 km)

Continuum

¢ It supports wave propagation (acoustic and Alfvénic), and -

triggers a chromospheric jet (similar to spicules) \
4000 km ‘1

4000 km
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Sunsp()ts From a protospot to a fully fledged sunspot
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Active regions provide with a wealth of
case studies of convective cells moulded
by the presence of strong (>1kG) magnetic
fields with disparate inclinations
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giving rise to various modes of
magneto-convection
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Schlichenmaier+ 2010a
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From a protospot to a fully fledged sunspot
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Chifu et al. (2025) | HMI + NLFFF extrapolatios
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Sunspots
Penumbra
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Penumbrae are mainly characterised by PPV OUOPH UL OLPTOUOTPOPRIIY

¢ A filamented structure — Penumbral filaments
radially directed from the centre of the umbra

¢ The filaments host strong horizontal magnetic fields

interlaced with the spot background — Ucombed o i
structure of the penumbra el = SRR e
AL t ,
¢ Plasma upflows at the inner heads and o3
downflows at their outer end ’
B o2
¢ Plasma flows along the penumbral filaments .
— Evershed flow Away from Towards the
the observer observer
¢ Plasma also downflows at the lateral edges of filaments < g

The extreme elongation of the penumbral magneto-convective cells is shaped by the strong
and highly inclined fields present in the penumbral areas (Rempel 2011; Rempel 2012;
Kitiashvili+2009; Panja+2021) and reduced vertical field



Magnetic topology of filaments

Field lines emerge from subphotospheric layers,
extend (horizontally) parallel to the solar surface
carrying an Evershed flow, and dive back below
the surface carrying the plasma with it

Rempel 2011



Magnetic topology of filaments

Field lines emerge from subphotospheric layers,
extend (horizontally) parallel to the solar surface
carrying an Evershed flow, and dive back below
the surface carrying the plasma with it
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Origin of the Evershed flow
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Sunspots
Light bridges




Light bridges

Light bridges show magneto-convective cells ranging from extended granular cells with properties

comparable to quiet Sun granules (e.g., Lagg+14) to more conspicuous cells with summits and valleys
(e.g., Lites+2004, Schlichenmaier+2016) or a fllamentary appearance (Katsukawa+2018)

al. 2018 | Hinode SOT data

filamentary light bridge new type of light bridge

Schlichenmaier 2016 | GREGOR

~ ] ~

Schlichenmaier 2016 | GREGOR
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Convective cells in light bridges appear to

o have longer lifetimes than in quiet Sun areas
(Hirzberger+2002)

o decreased magnetic field strength and increased
inclination (w.r.t. to umbrae)
o atemperature increase with respect to the surrounding

u m b rae CORE LIGHT BRIDGE

LINE
FORMING
REGION

Maps of magnetic field strength and orientation of the i
magnetic field vector indicate the presence of a canopy ureaks 9006, from L PSP/SST data
structure above the light bridges |

Many such light bridges are originated by the trapping granulation between pores during their

coalescence in the formation of sunspot/larger pores in forming active regions (e.g., Garcia de la
Rosa+1987, Schlichenmaier+ 2010 from HMI data, Toriumi+2015a from Hinode/SOT data)



Light bridges origin— Simulations

From the MHD simulation of a large-scale flux
3:;:‘«'.914 J (,.!l-‘m- -
t: ;?ﬁ;ﬁ,m‘ emergence from the convection zone by Cheung
o +2010, Toriumi+ 2015 found that

o a weakly magnetised plasma upflow in the near-
surface layers of the convection zone is entrained
between the emerging magnetic bundles that
appear as pores at the solar surface

o This convective upflow continuously transports
horizontal fields to the surface layer and creates
a light bridge structure

o Due to the magnetic shear between the horizontal
fields of the bridge and the vertical fields of the
ambient pores, an elongated cusp-shaped current
layer is formed above the bridge, which may be
favorable for magnetic reconnection

Toriumi et al. (2015) | MURaM simulations
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Umbral dots




Umbral dots

Umbrae and pores host the strongest vertical magnetic fields giving rise to umbral dots

INTENSITY DOPPLER VELOCITY

¢ UDs are associated with strong
upflows (up to 1.5km/s) in deep
photospheric layers

¢ Some of them also show
concentrated patches of
downflows (400-1000 m/s) at
their edges(!) —> signature of
their magneto-convective nature

Ortiz+ 2010, from CRISP/SST data



UMBRA. The stabilising effect of the
strong vertical fields inhibits the
penetration of this perturbations into
sub-photospheric layers

+ below 3-4 Mm -> central umbral dots
characterised by a shallow and fralil
mode of magneto-convection

+ below 7 Mm -> peripheral (close to
the penumbra) umbral dots with a
somewhat more vigorous mode of
magneto-convection

Umbral dots origin — Simulations

nese results are in line with those from

imulations by Schussler & Vogler (20006)

B, [kG]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

4.2 4.4 4.6 4.8 3.0

Schussler & Vogler 2006



Twist relaxation In
sunspot magnetic flux ropes



Twist relaxation in sunspot magnetic flux ropes

¢ The sunspot developed out of two coalescent individual pores
separated by a light bridge

¢ No signature of an overall rotation that some sunspots undergo
during their evolution

¢ Instead, individual rotation of one part (upper umbral core) of the
spot

¢ The penumbral filaments formed later around the umbral core show
a clear curvature, additional indication of a twist in this part of the
:G—band UT 11:53:37 scang 117 umbra

¢ Several flares were emitted by this AR during the emergence phase
(Valori et al. 2011). Flare energy generation is thought to be favoured
by twisting processes in emerging flux ropes (Schrijver et al. 2008;
Padinhatteeri & Sankarasubramanian 2010).
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(Valori et al. 2011). Flare energy generation is thought to be favoured
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Oscillations In the solar
atmosphere



Umbral flashes &
penumbral running waves

Lohner-Bottcher (PhD Thesis, 2016)
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® UMBRAL FLASHES (3 min) Umbral flashes &
Upward-traveling magneto-acoustic penumbral running waves

waves that steepen as they move into »
the less dense chromosphere
=> Shock waves: —

o A sudden rise in temperature and
pressure

© Enhanced emission in chromospheric
lines => bright flash visible in
narrowband imaging or spectral
observations

. il L ﬁomas et al. (2002b) Lohner-Bottcher (PhD Thesis, 201 6)

59.55 5849.568 584958 58Y.BZ
-1.0 0.0 1.0 wavelength in nm

»  — Gall 854.21nm, umbral oscillation

854.10 854,15 &54.20 854.25 ©54.30
wavelength in nm




Upward-traveling magneto-acoustic
waves that steepen as they move into

¢ UMBRAL FLASHES (3 min)

Umbral flashes &
penumbral running waves

the less dense chromosphere S\

=> Shock waves:

O A sudde
pressur

O Enhancl
lines =>
narrowk
observe

Required Energy for Chromospheric
Heating in Sunspot Umbrae (Avrett 1985):

Energy Delivered by Umbral
Flash Shocks (Anan+ 2019):

2.6 x10° [ergcm?2sT]

2x103 — 2x104 [erg cm—2s-1]

s  Call 854.21nm, umbral oscillation

854.10 854,15 &54.20 854.25 ©54.30
wavelength in nm

r (PhD Thesis, 2016)

time in min

40

GO
by JLB, 25.08.2014



UMBRAL FLASHES (3 min) Umbral flashes &
penumbral running waves

Upward-traveling magneto-acoustic
waves that steepen as they move into
the less dense chromosphere

=> Shock waves:

o A sudden rise in temperature and
pressure

© Enhanced emission in chromospheric
lines => bright flash visible in
narrowband imaging or spectral
observations

Lohner-Bottcher (PhD Thesis, 2016)

N ‘ '
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20 JB In kmn/s 0.
\\4 " c
5849.53 5849 50 589 50 589.67
W V —-1.0 0.0 1. wavelength in nm
\ 1.4

Magneto-acoustic waves originated
from umbral oscillations and appear
to move outward along the
penumbra guided by the inclined

854.10 854.15 854.20 854.25 854.30

magnetic field lines - R o
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Chromospheric heating by short-period
acoustic waves hidden in the smallest spatial
scales

o Short-period (10-100 s) acoustic waves from turbulent
convection have long been proposed as significant for
energy transport and heating

o Simulations indicate that insufficient spatial resolution

may underestimate short-period energy flux by a factor of
10

O Recent instruments have improved flux detection, though
still within half the level needed to offset chromospheric
radiative losses

DKIST and EST unprecedented spatial resolution will
decisively clarify the role of these small-scale acoustic waves
iIn chromospheric heating
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Conclusion

The Sun displays a remarkable variety of structures across all spatial and temporal scales

Continuous advancements in observational and data analysis techniques are revealing

features as small as 30 km on the solar disc, offering deeper insights into the Sun’s
dynamic atmosphere

With the capabilities of next-generation 4-meter solar telescopes such as DKIST and
EST, the exploration of our star enters an exciting new chapter
— and the quest continues.



