Proposal COST Action Neuromorphic Computing

for the Call 2025

Author: Researchers at Forschungszentrum Jülich

Research Coordination Objectives (RCOs)

- 1. Identify and prioritize key challenges in neuromorphic computing through reviews, expert input, and workshops, and define a roadmap for theory, hardware, and applications.
- 2. Promote synergies across neuroscience, hardware, AI, and HPC to align priorities, support sustainability, and foster interdisciplinary projects.
- 3. Develop and share best practices and benchmarks to enable validation across neuromorphic approaches, including metrics, datasets, and community tools.
- 4. Coordinate efforts across neuromorphic testbeds to support applications from real-time systems to scientific simulations and applied research.
- 5. Create a diverse application pool for neuromorphic computing, spanning sensor processing, healthcare, AI, robotics, and links to emerging technologies like quantum computing.

Capacity Building Objectives (CBOs)

- 1. Establish a pan-European network of researchers, industry, and stakeholders to connect neuroscience, devices, AI, and HPC, ensuring inclusive participation.
- 2. Develop training programs to equip researchers with cross-domain skills and access to platforms, infrastructure, and mentorship.
- 3. Raise awareness of ethical, policy, and dual-use issues through training and dialogue to support responsible innovation.
- 4. Foster exchange between academia, industry, and policy to align research with practical and market needs.
- 5. Support sustainability through early-career and industry collaboration, joint grant efforts, and long-term funding strategies.

Working Groups

WG 1: Foundations &	This WG focuses on the alignment between brain-inspired
Theoretical Models:	algorithms and neuromorphic hardware architectures. It
Computational Neuroscience	explores how algorithmic models—such as learning rules
Concepts and Computational	(e.g., STDP, e-prop), reservoir computing, or ANN-to-SNN
Limits	
LIIIIIIS	conversions (list is indicative)—can align with a variety of
	neuromorphic architectures. These may include digital
	event-based systems (e.g., Loihi, SpiNNaker), mixed-
	signal platforms (e.g., BrainScaleS), reconfigurable
	hardware (e.g., FPGAs), and emerging device
	concepts/architectures like in-memory computing. The
	examples given are indicative and not exhaustive, leaving
	room for additional contributions based on the interests
	of WG members. The focus is on understanding and
	improving how algorithm–architecture pairs interact in
	practice, including the role of encoding strategies,
	network topology, toolchain compatibility, and
	deployment workflows. As this alignment is typically
	mediated by software, tool support and abstraction layers
	also play an important role. The WG may also explore how

	HPC platforms can be used for simulating or prototyping
	neuromorphic algorithms, or how common software
	frameworks can support portability between
	neuromorphic and HPC systems. The WG provides a
	basis for sharing experience, identifying areas of difficulty,
	and jointly shaping methods and practices across the
WC 2. Nouverne amplie Devices 8	neuromorphic stack.
WG 2: Neuromorphic Devices & Circuits	This WG covers on the hardware side neuromorphic
Circuits	devices/materials (e.g., memristive devices,
	nanowire/dopant networks, oscillators, FeFETs) and small
	circuits made of these (e.g., LIF neurons using threshold
	switches) implementing memory and local learning. On
	the neuroscience side, it covers bio-inspired local
	learning mechanisms (e.g., biologically plausible
	backprop, predictive coding mechanisms). The WG
	should bring together experts from neuroscience and material science to discuss how neuroscientific
	learning/memory principles can be mapped on novel emerging devices and vice-versa how such devices can
	be tailored for local learning principles. This WG will have a strong link along the hierarchy towards neuromorphic
WC 2: Nouromorphic	computing architecture and algorithms.
WG 3: Neuromorphic Architectures & Brain-Inspired	This WG covers neuromorphic hardware and architectures using novel emerging devices and brain-
Algorithms	inspired algorithms coming from neuroscience. In this
Algorithms	
	WG neuromorphic engineers and neuroscientist work
	together to map brain-inspired algorithms and circuitry motifs to existing and emerging neuromorphic chip
	architectures, identifying missing links in the process. The
	WG is linked to WG 1 on the device circuits and local
	learning at a lower hierarchy level and to WG 3 on use
	cases and benchmarking at a higher level.
WG 4: Applications & Use	This WG focuses on higher-level aspects of neuromorphic
Cases, Evaluation &	computing, such as identifying promising real-world
Benchmarking	application areas across domains (e.g., sensors, edge
Denominarking	computing, multi-modal and multi-scale data analysis)
	and developing synthetic benchmarks and evaluation
	frameworks to support deployment on neuromorphic and
	HPC systems.
WG 5: Training, Education and	The aim of this WG is to support the growth of the
Resource Pooling	neuromorphic computing community by fostering
	interdisciplinary education and knowledge exchange. Key
	objectives include identifying relevant organizations and
	programs in the field, supporting the creation of
	educational tracks, and coordinating training initiatives
	across institutions. The WG will also work to promote
	resource and infrastructure sharing, and to build bridges
	across domains and expertise levels to strengthen
	collaboration and access.
WG 6: Dissemination &	The aim of this WG is to communicate the outcomes of
Outreach: Strategic	the Action effectively to scientific, industrial, and public
	audiences, including through strategic media and press
	addionood, motading unough stratogic media and press

Coordination and Policy	engagement. It also seeks to foster stronger science
Alignment	communication practices, align outreach activities with
	EU policy priorities, and highlight funding opportunities
	relevant to the neuromorphic computing landscape. A
	further goal is to build bridges with industry stakeholders
	and policy makers, ensuring the Action has visibility and
	impact beyond the academic sphere.