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We combine multimodal Earth Observation data into a Unified Foundation Model
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Global Carbon Stocks: A Dynamic Challenge

= Quantifying the global carbon budget is scientifically,
economically, and politically important

= Alarge portion of the global carbon budget is linked
to land use change, vegetation change, and soil
processes

= Lack of globally comprehensive, spatially and
temporally continuous, and consistent assessment
of terrestrial C stocks
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Mapping Global Terrestrial Carbon Stocks

Examples of current approaches
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resolution. http://cci.esa.int/biomass (Santoro et al., 2021, ESSD) Sgﬁ,?edgﬁ?rhggéag%g)mbau 315sv5h (Harris et al., 2021,

Challenges

= Various approaches exist, but they either are snapshots, or lack high temporal, spatial, or thematic
resolution

= Remote sensing projects and task-specific models require extensive labeled datasets and repeatedly
significant computational resources
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Al Foundation Models (FMs) in Earth Observation

= Large-scale, pre-trained Al models can perform a wide array of downstream tasks with unprecedented
accuracy and efficiency

= Leverage extensive datasets and advanced architectures, enabling capturing complex patterns and
features, can be fine-tuned for specific applications with minimal additional training

= Particularly valuable for the diverse and complex nature of multi-modal remote sensing data (optical, radar,
lidar, multi-spectral, multi-resolution, multi-temporal, 2D, 3D)

= Strong performance in handling diverse remote sensing tasks such as classification, segmentation, object
detection, regression

Lu et al. "Al foundation models in remote sensing: A survey.” arXiv preprint arXiv:2408.03464 (2024).
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Prithvi: Foundation Models for Generalist Geospatial Artificial Intelligence
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Spectral GPT: Spectral Remote Sensing Foundation Model
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Limitations of Current FMs in Earth Observation for Carbon Monitoring

Single-Modality or Weak Multimodal Integration

Resolution Gaps

Temporal Limitations

Pretraining Objectives not Aligned with Carbon Estimation
= Most are trained for semantic segmentation of land cover classification
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o
What is Earth Observation data?

Definition: Remote sensing data collected from satellites, aircraft, or drones
Types of Data:

= Optical (RGB, infrared)

= Radar (e.g. SAR, InSAR)

= LiDAR (laser-based, 3D)

= Climate & Environmental (e.g., temperature, rainfall from reanalysis)
Global, Repeated, Non-Invasive

Used to monitor land, oceans, atmosphere, and human activity

Enables tracking of changes over time — vegetation, land use, water, climate

Sentinel-2 Sentinel-1 ASTER DEM Dynamic World Canopy Height ESA Worldcover
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Input Datasets: HLS multispectral imagery

= Harmonized Landsat Sentinel

= Combined satellite data from NASA Landsat and
ESA Sentinel-2

= 15 imaging bands: includes natural color,
infrared, and thermal

= Global coverage, 2015-2024
= 30m resolution; 2—-3 day revisit time
= Tiles: 3660x3660 pixels (~110x110 km?)

= |deal for monitoring vegetation health and
seasonal land changes over time
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Input Datasets: TanDEM-X Interferometric Coherence
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TanDEM-X InSAR coherence over the Amazon forest
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Processed around 20k TanDEM-X InSAR acquisitions in 20m resolution between 2018 and 2023 for Amazon test region

Radar-based elevation and surface
texture

20m resolution INSAR data for Amazon
region (2018-2023)

Penetrates clouds — works in tropical
regions

Measures surface roughness, forest
structure, canopy gaps

Complements optical and LiDAR for
biomass modeling
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Input Datasets: TanDEM-X Interferometric Coherence
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Input Datasets: GEDI Lidar Data GEB "ﬁg

ECOSYSTEM LIDAR

= Laser-based 3D measurements of
Earth’s forests, launched on the
International Space Station (ISS)

= Captures full vertical structure of
vegetation: canopy height, layering, and
sub-canopy gaps

= Provides high-quality 3D profiles at 25-
meter footprints, spaced ~60m apart

= Especially valuable for estimating forest
biomass and carbon storage

*~
600 m - -

coverage

beams 7
60 m

Hancock, Steven & Mcgrath, Ciara & Lowe, Christopher & Davenport, lan & Woodhouse, lain. (2021).
13 Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. Royal Society Open HiF=
Science. 8. 10.1098/rs0s.211166.



Input Datasets: GEDI Lidar Data

Laser pulse
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= Full-waveform LIDAR: Captures
complete vertical energy return profile
— Not just height, but how vegetation is
distributed from ground to canopy

= Canopy cover, vertical distribution

= Critical for biomass and carbon stock
estimation at tree-level precision
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Input Datasets: GEDI Lidar Data

Canopy Height 2019-2023 (206,063,969 footprints)



Input Datasets: GLO-30

High-resolution digital elevation model (DEM) at
30-meter resolution

Covers the entire globe

Derived from optical stereo satellite data (from
Copernicus program)

Provides ground elevation: valleys, hills,
mountain ranges

Essential for understanding topographic variation,
water flow, and vegetation patterns
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Input Datasets: ERAS

Global dataset of hourly to yearly climate variables
(temperature, rainfall, wind, etc.)

Produced by ECMWEF, covering 1979 to present
Resolution: ~30 km spatial, hourly temporal
Combines satellite observations and weather models

Provides consistent, gap-free climate data over space
and time

Helps understand how climate influences vegetation,
soil, and carbon fluxes
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Capturing Our Complex Planet through Multimodal
Earth Observation

Multispectral Radar Digital Elevation Maps Space/Air borne Lidar
(RGBY/ Infrared/ Thermal) (DEM)

Canopy Height Climate Reanalysis data World cover more

Date Sentinel-2: 2018- ™% | s "
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Capturing Our Complex Planet through Multimodal
Eh Observation
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i
Capturing Our Complex Planet through Multimodal

Earth Observation

Goal: Develop a large-scale, pre-trained
foundation model tailored for multi-modal
remote sensing data to enable accurate and
efficient performance across diverse geospatial
tasks.

Multi-modal integration: Handle optical, radar,
LIDAR, multi-spectral, multi-resolution, multi-

temporal, 2D, and 3D data
. . . SO Foundation
Support multiple spatial resolutions (e.g., 20m, Model

25m, 30m, 9km) and multi-temporal data

Integrate rich metadata (e.g., location, time,
climate) and handle sparse modalities like LIDAR

Efficient fine-tuning: Adapt to specific applications
with minimal additional training

Versatile task support: Achieve strong
performance in classification, segmentation, object



3D-ABC FM Backbone

Evaluated various models types
= ViT (e.g., Prithvi), SWINv2 transformer, DOFA

» New paradigm: Intro of Tokenization in Multimodal Processing
(e.g., SOTA)

» Decided on 4M: Massively Multimodal Masked Modeling as
3D-ABC backbone
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Mask tokens (for images) &
left-shifted tokens (for sequences)

Mizrahi et al. (2023): 4M: Massively multimodal masked modeling (Advances in Neural
Inf8rmation Processing Systems)

4M Foundation Model:

Tokenization can be a solution to unify data from all
modalities in a similar latent space

FM serves to “Generate” input tokens into output tokens

Self-supervised learning directly masks tokens rather
than raw data, enabling token interaction across the
modalities

Model designed originally for vision language tasks, but
we can build tokenizers for geospatial data/metadata/...

Tokens from different modalities can interact with each
other during pretrain

Input tokens and output tokens are both randomly
selected, maximizing generalization capacity
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4M: Massively Multimodal Masked Modeling
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o
Tokenization for Different Modalities
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Spatial discrete VAE with diffusion decoder: RGB, normal, depth, edges
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We use Diffusion VAE to encode the complex spatial data.
(4 Modalities)
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Tokenization for Different Modalities

Input: Multiband images (e.g., 15-band HLS: RGB, NIR, SWIR, TIR, etc.)

Encoder: Vision Transformer (ViT) processes the spatial + spectral context

Latent Representation: Discrete tokens using Vector Quantization

Decoder: Diffusion model reconstructs images from token sequence

Training Objective:

= Quantization loss (VQ-VAE): Forces latent tokens to match learned codebook entries
= Diffusion loss: Trains model to denoise and recover full image from noisy latents
Enables unified, spatially-aware tokens across multi-spectral data
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Tokenization for Different Modalities

In bamboo thickets,
A red panda's gentle
gaze,
Autumn's calm
embrace.

Ared panda's gentle
gaze,
Autumn's calm
embrace.

Date Sentinel-2: 2018-10-06
Geolocation: 69.3, -19.6

Biome: Tundra

Ecoregion: Arctic foothills tundra

Temperature [C]
yearly mean/min/max: -6.6/-42.0/24.4
monthly mean/min/max: -4.6/-28.2/11.9

Precipitation [mm]
yearly total: 1628.2
monthly total: 36.9

In bamboo thickets,

We use WordPiece Tokenizer to encode the ERA5 MetaData (1 Modality)
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Tokenization for Different Modalities

ERAS metadata: Structured variables like temperature, precipitation, humidity, wind, time, location
Preprocessing: Convert numerical and categorical metadata into token sequences
WordPiece tokenizer:
Originally used in NLP (e.g., BERT)
Breaks input into sub-word units based on frequency
Enables:
= Handling of structured metadata as text-like input
= Shared embedding space with other modalities (e.g., image tokens)
Learned jointly with other tokenizers during pretraining
Helps model understand climate context across space and time

HiF-



Downstream Task: Land Cover and Change

Objective: Classify land cover types (e.g., forest, urban, agriculture, water)

Change detection: Identify and quantify changes over time (e.g., deforestation, urban expansion)
Input: Multitemporal satellite imagery (HLS), radar (TanDEM-X), climate (ERAD5)

Model: Finetune foundation model to detect subtle land surface changes

Output:

= Land cover maps for multiple years

= Temporal trends and transition matrices
Applications:

= Environmental monitoring

= Urban planning

= Biodiversity & conservation

= Emissions tracking (e.g., forest loss)

ESA CCI High Resolution Land Cover Change maps
28




Downstream Task: Vegetation Height

Goal: Estimate vegetation height (especially tree height) across large areas
Why it matters:

= Critical for biomass and carbon stock estimation

= Helps distinguish forests, shrubs, grasslands
Inputs:

= GEDI LiDAR (sparse but accurate vertical structure)

= TanDEM-X radar (structure and surface roughness)

= Multispectral imagery (HLS, texture + spectral cues)

1.2 - g

M NoData| Foliage Height Diversity
- - < at 6 km resolution
. o

https://doi.org/10.3334/ORNLDAAC/2339

Model: Finetune foundation model to learn 3D canopy structure from sparse and dense inputs

Output:
= Wall-to-wall maps of vegetation height
= Fine spatial resolution (e.g., 30m)
Applications:
= Forest monitoring and management
= Ecosystem classification

29
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Downstream Task: Above Ground Carbon Stock Estimation

Goal: Estimate the amount of carbon stored in vegetation above the soil
Why it matters:

= Key to understanding the global carbon budget

= Essential for climate models, REDD+, and land-based mitigation
Inputs:

= GEDI LiDAR (anchor for tree structure and height)

= Vegetation height & land cover maps

= Radar (TanDEM-X), optical (HLS), climate (ERAS)

Vegetation
Model: Finetune the foundation model using field inventory plots and biomass reference maps 420 GtC
Output:
= Continuous maps of aboveground biomass (converted to carbon)
= High-resolution, time-resolved estimates
I Permafrost
Applications: 1400 GtC Soils
1700 GtC

= Carbon accounting and emissions reporting
= Forest conservation and climate finance
= Land degradation assessment
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3D-ABC FM, Input Data and Downstream Tasks

3D-ABC: Towards Global 3D Above and
Below Ground Carbon Stocks

Multimodal Foundation Model for Geospatial Analytics

Input Data

Downstream Data Integration

- Integration of domain specific data for
downstream training and validation

Sentinel 2
Q’ Multispectral Data

‘—- b HLS
Sentinel-2 Harmonized Landsat and
§

E Landsat 8

= Environmental covariates
= |n-situ observations
g H TanDEM-X « LiDAR (spaceborne, ALS & TLS)
9 Interferometric SAR
" ‘#.; Coherence Data

@. GEDI

Gl_obal Eco;yst.em
i e w Dynamics "L‘i';f%ﬁ:
§ /( (CESat ICESat 1 &2

'CES":‘, w Ice, Cloud, and Lor;jl I)Emg:;:

i GLO-30 DEM

! §i ‘ Global 30m Digital
Gperm,s Elevation Model

e — DSM Data

e ..

@ Rasterized Data
Interpolated LiDAR

Data Preparation & Transfer
ERA-5 - Military Grid Reference System

ECMWF Reanalysis v5 (MGRS) projection
Climate Reanalysis Data « MGRS tiling

« Zarr, HDF5, GeoTiff formats
« Data transfer pipeline

Input Data Curation
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Downstream Task

Land Cover dh

and Change
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Disturbance Regimes
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Net Primary
Production
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3D-ABC HPC Resources

JJJJJJ JUPITER: The arrival of Exascale in Europe
veercoveuTie— hittps://www.fz-juelich.de/en/ias/jsc/jupiter
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HPC status and plans

= Computing time now available on HPC systems at
JSC JUWELS (>3,000 Nvidia A100 GPUs)

= JUPITER Exascale Development Instrument (JEDI):
Benchmarks on different hardware accelerators:
A100, H100, GH200, AMD MI250, IPU GC200,
WestAl H100 and JEDI GH200

JEDI: The first module of the exascale supercomputer JUPITER
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Summary

= Status

4M FM selected, input data for Amazon ready, in prep for Alaska-NW Canada region, data pipeline ready,
finetuning data for first downstream tasks ready

= Scope

3D-ABC FM leverages huge remote sensing, field, and modeling datasets to capture carbon stock dynamics
at enhanced spatial resolution

Finetuning towards multiple downstream tasks will deliver thematical insights with a broad range of
applications and uses

= Relevance

Detailed quantification of global terrestrial carbon stocks and dynamics for science, society, and policy
making
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