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Introduction
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We combine multimodal Earth Observation data into a Unified Foundation Model
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Global Carbon Stocks: A Dynamic Challenge

▪ Quantifying the global carbon budget is scientifically, 
economically, and politically important  

▪ A large portion of the global carbon budget is linked 
to land use change, vegetation change, and soil 
processes 

▪ Lack of globally comprehensive, spatially and 
temporally continuous, and consistent assessment 
of terrestrial C stocks
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Mapping Global Terrestrial Carbon Stocks

Challenges 
▪ Various approaches exist, but they either are snapshots, or lack high temporal, spatial, or thematic 

resolution 
▪ Remote sensing projects and task-specific models require extensive labeled datasets and repeatedly 

significant computational resources
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Global aboveground biomass for 2010, 2017-2020 at 100m spatial 
resolution. http://cci.esa.int/biomass (Santoro et al., 2021, ESSD) Open data: https://gfw.global/315sv5h (Harris et al., 2021, 

Nature Climate Change)

Examples of current approaches
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AI Foundation Models (FMs) in Earth Observation

▪ Large-scale, pre-trained AI models can perform a wide array of downstream tasks with unprecedented 
accuracy and efficiency 

▪ Leverage extensive datasets and advanced architectures, enabling capturing complex patterns and 
features, can be fine-tuned for specific applications with minimal additional training 

▪ Particularly valuable for the diverse and complex nature of multi-modal remote sensing data (optical, radar, 
lidar, multi-spectral, multi-resolution, multi-temporal, 2D, 3D) 

▪ Strong performance in handling diverse remote sensing tasks such as classification, segmentation, object 
detection, regression
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Lu et al. "AI foundation models in remote sensing: A survey.” arXiv preprint arXiv:2408.03464 (2024).
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Prithvi: Foundation Models for Generalist Geospatial Artificial Intelligence

6 https://arxiv.org/abs/2310.18660
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SpectralGPT: Spectral Remote Sensing Foundation Model
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https://arxiv.org/abs/2311.07113
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Limitations of Current FMs in Earth Observation for Carbon Monitoring

▪ Single-Modality or Weak Multimodal Integration 

▪ Resolution Gaps 

▪ Temporal Limitations 

▪ Pretraining Objectives not Aligned with Carbon Estimation 
▪ Most are trained for semantic segmentation of land cover classification
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What is Earth Observation data?

▪ Definition: Remote sensing data collected from satellites, aircraft, or drones 
▪ Types of Data: 
▪ Optical (RGB, infrared) 
▪ Radar (e.g. SAR, InSAR) 
▪ LiDAR (laser-based, 3D) 
▪ Climate & Environmental (e.g., temperature, rainfall from reanalysis) 

▪ Global, Repeated, Non-Invasive 
▪ Used to monitor land, oceans, atmosphere, and human activity 
▪ Enables tracking of changes over time — vegetation, land use, water, climate
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Input Datasets: HLS multispectral imagery

▪ Harmonized Landsat Sentinel 
▪ Combined satellite data from NASA Landsat and 

ESA Sentinel-2 
▪ 15 imaging bands: includes natural color, 

infrared, and thermal 
▪ Global coverage, 2015–2024 
▪ 30m resolution; 2–3 day revisit time 
▪ Tiles: 3660×3660 pixels (~110×110 km²) 
▪ Ideal for monitoring vegetation health and 

seasonal land changes over time 
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Input Datasets: TanDEM-X Interferometric Coherence

Processed around 20k TanDEM-X  InSAR acquisitions in 20m resolution between 2018 and 2023 for Amazon test region 
11

▪ Radar-based elevation and surface 
texture 

▪ 20m resolution InSAR data for Amazon 
region (2018–2023) 

▪ Penetrates clouds — works in tropical 
regions 

▪ Measures surface roughness, forest 
structure, canopy gaps 

▪ Complements optical and LiDAR for 
biomass modeling 
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Input Datasets: TanDEM-X Interferometric Coherence

12 TanDEM-X InSAR coherence over the Amazon forest 
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Input Datasets: GEDI Lidar Data

13
Hancock, Steven & Mcgrath, Ciara & Lowe, Christopher & Davenport, Ian & Woodhouse, Iain. (2021). 
Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. Royal Society Open 
Science. 8. 10.1098/rsos.211166. 

▪ Laser-based 3D measurements of 
Earth’s forests, launched on the 
International Space Station (ISS) 

▪ Captures full vertical structure of 
vegetation: canopy height, layering, and 
sub-canopy gaps 

▪ Provides high-quality 3D profiles at 25-
meter footprints, spaced ~60m apart 

▪ Especially valuable for estimating forest 
biomass and carbon storage 
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Input Datasets: GEDI Lidar Data

14 https://doi.org/10.1029/2018ea000506

▪ Full-waveform LIDAR: Captures 
complete vertical energy return profile 
→ Not just height, but how vegetation is 
distributed from ground to canopy 

▪ Canopy cover, vertical distribution 
▪ Critical for biomass and carbon stock 

estimation at tree-level precision
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Input Datasets: GEDI Lidar Data

15 Canopy Height 2019-2023 (206,063,969 footprints)
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Input Datasets: GLO-30

▪ High-resolution digital elevation model (DEM) at 
30-meter resolution 

▪ Covers the entire globe 
▪ Derived from optical stereo satellite data (from 

Copernicus program) 
▪ Provides ground elevation: valleys, hills, 

mountain ranges 
▪ Essential for understanding topographic variation, 

water flow, and vegetation patterns 
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Input Datasets: ERA5

▪ Global dataset of hourly to yearly climate variables 
(temperature, rainfall, wind, etc.) 

▪ Produced by ECMWF, covering 1979 to present 
▪ Resolution: ~30 km spatial, hourly temporal 
▪ Combines satellite observations and weather models 
▪ Provides consistent, gap-free climate data over space 

and time 
▪ Helps understand how climate influences vegetation, 

soil, and carbon fluxes 
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C3S/ECMWF
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Goal: Develop a large-scale, pre-trained 
foundation model tailored for multi-modal 
remote sensing data to enable accurate and 
efficient performance across diverse geospatial 
tasks. 

Multi-modal integration: Handle optical, radar, 
LiDAR, multi-spectral, multi-resolution, multi-
temporal, 2D, and 3D data 
Support multiple spatial resolutions (e.g., 20m, 
25m, 30m, 9km) and multi-temporal data 
Integrate rich metadata (e.g., location, time, 
climate) and handle sparse modalities like LiDAR 
Efficient fine-tuning: Adapt to specific applications 
with minimal additional training 
Versatile task support: Achieve strong 
performance in classification, segmentation, object 

Capturing Our Complex Planet through Multimodal 
Earth Observation



via: 
home // slides // layout 

Change text level 
in the menu via: 

3D-ABC FM Backbone
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Mizrahi et al. (2023): 4M: Massively multimodal masked modeling (Advances in Neural 
Information Processing Systems)

4M Foundation Model: 
▪ Tokenization can be a solution to unify data from all 

modalities in a similar latent space 
▪ FM serves to “Generate” input tokens into output tokens 
▪ Self-supervised learning directly masks tokens rather 

than raw data, enabling token interaction across the 
modalities 

▪ Model designed originally for vision language tasks, but 
we can build tokenizers for geospatial data/metadata/… 

▪ Tokens from different modalities can interact with each 
other during pretrain 

▪ Input tokens and output tokens are both randomly 
selected, maximizing generalization capacity

Evaluated various models types 
▪ ViT (e.g., Prithvi), SWINv2 transformer, DOFA 
▪ New paradigm: Intro of Tokenization in Multimodal Processing 

(e.g., SOTA) 
▪ Decided on 4M: Massively Multimodal Masked Modeling as 

3D-ABC backbone
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Modified from David Mizrahi et al., 4M: Massively Multimodal Masked Modeling, NeurIPS 2023.
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Tokenization for Different Modalities
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We use Diffusion VAE to encode the complex spatial data. 
(4 Modalities)



via: 
home // slides // layout 

Change text level 
in the menu via: 

Tokenization for Different Modalities

25

▪ Input: Multiband images (e.g., 15-band HLS: RGB, NIR, SWIR, TIR, etc.) 
▪ Encoder: Vision Transformer (ViT) processes the spatial + spectral context 
▪ Latent Representation: Discrete tokens using Vector Quantization 
▪ Decoder: Diffusion model reconstructs images from token sequence 
▪ Training Objective: 
▪ Quantization loss (VQ-VAE): Forces latent tokens to match learned codebook entries 
▪ Diffusion loss: Trains model to denoise and recover full image from noisy latents 

▪ Enables unified, spatially-aware tokens across multi-spectral data 
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Tokenization for Different Modalities
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We use WordPiece Tokenizer to encode the ERA5 MetaData (1 Modality)
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Tokenization for Different Modalities
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▪ ERA5 metadata: Structured variables like temperature, precipitation, humidity, wind, time, location 
▪ Preprocessing: Convert numerical and categorical metadata into token sequences 
▪ WordPiece tokenizer: 
▪ Originally used in NLP (e.g., BERT) 
▪ Breaks input into sub-word units based on frequency 
▪ Enables: 
▪ Handling of structured metadata as text-like input 
▪ Shared embedding space with other modalities (e.g., image tokens) 

▪ Learned jointly with other tokenizers during pretraining 
▪ Helps model understand climate context across space and time 
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Downstream Task: Land Cover and Change

▪ Objective: Classify land cover types (e.g., forest, urban, agriculture, water) 
▪ Change detection: Identify and quantify changes over time (e.g., deforestation, urban expansion) 
▪ Input: Multitemporal satellite imagery (HLS), radar (TanDEM-X), climate (ERA5) 
▪ Model: Finetune foundation model to detect subtle land surface changes 
▪ Output: 
▪ Land cover maps for multiple years 
▪ Temporal trends and transition matrices 

▪ Applications: 
▪ Environmental monitoring 
▪ Urban planning 
▪ Biodiversity & conservation 
▪ Emissions tracking (e.g., forest loss) 

28
ESA CCI High Resolution Land Cover Change maps
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Downstream Task: Vegetation Height

▪ Goal: Estimate vegetation height (especially tree height) across large areas 
▪ Why it matters: 
▪ Critical for biomass and carbon stock estimation 
▪ Helps distinguish forests, shrubs, grasslands 

▪ Inputs: 
▪ GEDI LiDAR (sparse but accurate vertical structure) 
▪ TanDEM-X radar (structure and surface roughness) 
▪ Multispectral imagery (HLS, texture + spectral cues) 

▪ Model: Finetune foundation model to learn 3D canopy structure from sparse and dense inputs 
▪ Output: 
▪ Wall-to-wall maps of vegetation height 
▪ Fine spatial resolution (e.g., 30m) 

▪ Applications: 
▪ Forest monitoring and management 
▪ Ecosystem classification
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https://doi.org/10.3334/ORNLDAAC/2339
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Downstream Task: Above Ground Carbon Stock Estimation

▪ Goal: Estimate the amount of carbon stored in vegetation above the soil 
▪ Why it matters: 

▪ Key to understanding the global carbon budget 
▪ Essential for climate models, REDD+, and land-based mitigation 

▪ Inputs: 
▪ GEDI LiDAR (anchor for tree structure and height) 
▪ Vegetation height & land cover maps 
▪ Radar (TanDEM-X), optical (HLS), climate (ERA5) 

▪ Model: Finetune the foundation model using field inventory plots and biomass reference maps 
▪ Output: 

▪ Continuous maps of aboveground biomass (converted to carbon) 
▪ High-resolution, time-resolved estimates 

▪ Applications: 
▪ Carbon accounting and emissions reporting 
▪ Forest conservation and climate finance 
▪ Land degradation assessment
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3D-ABC FM, Input Data and Downstream Tasks
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3D-ABC HPC Resources

HPC status and plans 
▪ Computing time now available on HPC systems at 

JSC JUWELS (>3,000 Nvidia A100 GPUs) 

▪ JUPITER Exascale Development Instrument (JEDI): 
Benchmarks on different hardware accelerators: 
A100, H100, GH200, AMD MI250, IPU GC200, 
WestAI H100 and JEDI GH200 
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JEDI: The first module of the exascale supercomputer JUPITER

JUPITER: The arrival of Exascale in Europe 
https://www.fz-juelich.de/en/ias/jsc/jupiter 

https://www.fz-juelich.de/en/ias/jsc/jupiter
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Summary

▪ Status 
4M FM selected, input data for Amazon ready, in prep for Alaska-NW Canada region, data pipeline ready, 
finetuning data for first downstream tasks ready 

▪ Scope 
3D-ABC FM leverages huge remote sensing, field, and modeling datasets to capture carbon stock dynamics 
at enhanced spatial resolution 
Finetuning towards multiple downstream tasks will deliver thematical insights with a broad range of 
applications and uses 

▪ Relevance 
Detailed quantification of global terrestrial carbon stocks and dynamics for science, society, and policy 
making
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