HWD700 : a 700 m Hot-Water Drill REASSESS project

Luc Piard, Romain Duphil

Florent Gimbert, Eric Lefebvre, Guilhem Fresh, Alexandre Michel Alexandre, Firmin Fontaine, Sébastien Dycke, Philippe Possenti, Olivier Alemany

IGE Institut des Géosciences et de l'Environnement Grenoble, France

ERC REASSESS

The Project:

"Probing and predicting the dynamical response of the Greenland-Ice-Sheet to surface melt water" (florent.gimbert@univ-Grenoble-alpes.fr)

Surface deployment :

- GNSS station
- seismic nodes (200)

Borehole deployment (4):

- Optical fibers (DTS , DSTS , DAS)
- Piezometer
- Borehole seismometer

Requirements:

- The system shall be capable of drilling to 700 m depth in cold ice.
- The system shall drill at a maximum speed of 120 m/h.
- The drilled hole shall have a diameter of 10 cm.
- The system shall be movable on the glacier surface within a **1 km radius** without requiring heavy logistics (no truck or helicopter).
- The system shall be simple and operable by a team of maximum 3 persons
- The system may use water available on the surface (no recirculation required).

Previous experience in HWD:

20 years in the Alpes but never in Greenland!

\Rightarrow So we needed some help!

We contact several team with strong experience in Greenland and they gave us some valuable advices

Finally
We opted for a design similar to the probe used by
Joel Harper
Thanks to him

Winch design: capstan principle

Winch design: capstan principle

"To allow hydraulic fittings to pass over the

wheel"

1 reel load with 700 m hose ≈ 350kg

10 reels load with 70 m hose 30 kg/each

9th International Symposium on Ice Drilling Technology, Potsdam, Germany

Motorized hose reel

Complete setup

Hydraulic considerations

- Thermoplastic hose ¾ " 200bar (kutting 1A12HP)
- 4 fuel heaters: total heating power 360kW
- 2 pumps total water flow: 70 l/min (max)
- Water pressure up to 100bar (max)

90kW fuel heater (Comet Hot box)

High pressure pump (Comet TW11025 drive Honda GX690)

Nozzel stem
2m long , 50mm OD brass pipe (40kg)
equipped with high pressure nozzle
(Size 040 strait jet)

Hydraulic circuit

Electric considerations

Data display & Logging system

Winch control box (ABB drivers)

Autonomous logger:

- Borehole pressure
- Inclinometer sensor
- Magnetic sensor
- 2 temperatures sensors ()

Isunnguata Sermia, west Greenland, July 2025

4 boreholes touching the bed between 600m and 675m

Isunnguata Sermia, west Greenland, July 2025

Isunnguata Sermia, west Greenland, July 2025

Drilling performances

- Average penetration rate 100 m.h-1
- Retrieval speed up to 1200 m.h-1
- Borehole diameter enough (no data)
- Fuel consumption 240l for 600m borehole
- Gasoline consumption 70l for 600m borehole (pumps + generator)
- It takes one day to move the equipment (with ATV) and one day to drill

Preliminary results

DTS Measurement (Distributed Temperature Sensing)

DTS boreholes temperature profiles:

Vertical resolution 10cm

• Temperature resolution 0.001°C

Acquisition

Optical fibers coming from boreholes

Conclusions

First field season was a success!

- > Drill performances are close to what we expected.
- > Splitting the hose into sections was effective .
- \triangleright We were able to move the drill a 1 km radius.
- ➤ What about the autonomous logger ?: it need some software & hardware improvements

