

THE CHALLENGES INVOLVED IN DEVELOPING A POWER SUPPLY, COMMUNICATION SYSTEM AND DRIVE UNIT FOR A DEEP ICE CORE DRILLING RIG.

Matthias Hüther¹, Benjamin Broy¹, Frank Wilhelms¹²

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

²Georg August University of Göttingen, Department of Isotope Geology, Göttingen, Germany

HELMHOLTZ

Motivation / Requirements

- After EPICA (1996-2001) interest grew to drill an older ice core.
- Keeping ice coring drill technology alive in Europe.
- More downhole power and date rates, requested.
- Wish of reusing similar / same power supply, motor and modem:
 - Deep and shallow drilling
 - Deep drill and loggers

Early evaluations

Winch and Cable dimensions fixed early.

- Investigations into fiber-optical communications.
 - Cable stretch too high during core break / fast travel.

- Wire dimensions optimization, showed that coax in steel armored cable, close to optimum in given dimensions.
 - Higher downhole power require higher voltage!

Power requirement

Higher electrical power then in EPICA / GRIP version.

Bottleneck: Vicor DC/DC converter, rated for 600W

Voltage variations

Selected Motor and Controller

- Cable voltage direct to motor controller
- Direct drive with brushless motor
- Pressure neutral design
- Hollow shaft reducing liquid resistance while winching
- Challenges:
 - Low rotation speeds (10-200 RPM)
 - High torque (60-80 Nm) without gear
 - Custom motor integration
- Problems:
 - Integrated Hall sensors not working
 - Availability of comonents

Electronic Section

- Dedicated pressure housing for electronic
- Integration of high voltage components
 - Power-line modem
 - Wide input range DC/DC 200 1000 VDC
 - Selected motor driver up to 740 VDC

Power-line Communication

- Transparent Ethernet and Serial bridge
- Dimensioning and testing in co-operation with Cipunet®
- Data rates in the range of ~ 20 kbit/s with 300 ms ping latency
- Noise from motor controller challenging to decouple

Winch cable characterization test at Kohnen station in 2018

Field testing during development

- 2016 Neumayer III
 - Feasibility of motor and controller
 - 101m shallow core
 - Too low supply voltage (195VDC) / COM failure of RS485
- 2017 EastGRIP
 - 80m shallow core
 - Increased supply voltage 325 VDC
 - Power transmission sufficient for lower torque shallow coring setup
 - RS485 COM working (noisy at high currents)
- 2018 Kohnen
 - High voltage drive and power-line modem
 - · Artificial mechanical load

BEOI Field Seasons

- 2019/20 Camp Setup
- 2020/21 Covid Cancelation
- 2021/22 Pilot hole / Deep drill setup
- 2022/23 Deep drilling (130 804 m)
- 2023/24 Deep drilling (804 1836 m)

2024/25 - Deep drilling (1836 – 2804 m)

First time at a drill site Firm- & Software not finished

Started to drill / failing to hold higher torque

Fallback to NBI Motor for drilling

2025/26 - Planned (Bed rock / deviation drilling)

Failure Investigation

- Re-evaluation of power delivery
 - Numerical simulation of dynamic voltage behavior on the cable
 - No issues found / better then assumed
- Started with re-design of motor (supplier not responding)
- Re-design showed error in previous assumptions
 - High torque values possible, but with much higher losses as planned
 - Efficiencies drop to < 50% at 65 Nm (P_{mech}: 400W @ 60RPM)

Mitigation Strategy

- Power supply already maximized for given cable
- Motor re-design showed only minor optimization potential in given dimensions
- CDR||Shield + Armor less resistance, but potential impact on modem, not as safe
- Best option of increasing efficiencies by increasing RPM
- Chip transport is limiting the RPM
- Gear required

Planned next version includes a gear

Challenges:

- Pressure neutral
- Acceptable gear ratio limited by viscosity

Follow-up / related talks

- A new dynamometer for testing ice core drill motors and gears
- Resilient gear design for deep ice drilling systems (Lemburg)

Other Problems Encountered

- Initial contractor lost 90% of engineers (buy out)
- High complexity
 - Physical limits of conductor
 - Highly inter-dependencies between systems
 - · Deep knowledge in multiple disciplines required
 - Small engineering teams
- Long project phases problematic for suppliers and spare parts
 - 1. DC/DC Converter N/A after Covid supply chain issues
 - DC/DC Converter N/A sanctions after Russian invasion
- Covid supply chain shortage
 - Re-design of Main Controller PCB
 - MCU, Components: N/A or price increases up to 100x
- Equipment re-work between Antarctic seasons impossible
 - Global logistic disruptions
 - Air cargo capacity almost zero
 - EU customs bureaucracy

Questions

Thanks for your attention.

Any Questions?

Abstract

• THE CHALLENGES INVOLVED IN DEVELOPING A POWER SUPPLY, COMMUNICATION SYSTEM AND DRIVE UNIT FOR A DEEP ICE CORE DRILLING RIG.

We will provide a comprehensive overview on the development process of the electric power train and mechanical drive chain of a deep ice core drill system, with particular emphasis on the challenges encountered during the Beyond EPICE Little Dome C deep ice coring operation.

The covered deep ice-coring drill-system is one of the frequently used, cable-suspended, electro-mechanical ice-core drill types. In such systems, the electrical power and communication are transmitted via the conductors inside the winch cable. The intended drive chain was a brushless motor without a reduction gear.