

Generative AI for Inverse Problems in Biomedical Computational Microscopy

HZDR · CASUS · Prof. Dr. Artur Yakimovich · a.yakimovich@hzdr.de · www.casus.science

INSTITUTE OF

PARTICIPATING INSTITUTIONS

Federal Ministry

of Education

and Research

SACHSEN Diese Maßnahme wird mitfinanziert mit Steuermitteln auf Grundlage des vom Sächsischen Landtag beschlossenen Haushaltes.

How Far can We See in a Microscope?

Ernst Karl Abbe

Super-resolution Microscopy

Schermelleh, Lothar, et al. "Super-resolution microscopy demystified." Nature cell biology 21.1 (2019): 72-84.

The Royal Swedish Academy of Sciences has decided to award the

"for the development of super-resolved fluorescence microscopy"

Super-resolution Microscopy as an Inverse Problem

Widefield

Machine Learning as a Solution to an Inverse Problem

Machine Learning as a Solution to an Inverse Problem

Convolutional Neural Networks

Super-resolution Microscopy as an Inverse ProblemWidefieldGT (SIM)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.

Computational Super-resolution Microscopy: Finding a Suitable Dataset BioSR ~20k Widefield GT

10

Not nearly enough!

DLi, della Maggiora & Yakimovich et al., 2024, Coms. Eng.

Computational Super-resolution Microscopy: Finding a Suitable Dataset

Rui Li

11

Gabriel della Maggiora

 $I = \phi(h * x + b)$

, where the image *I*, is the result of the convolution between object *x* and system PSF *h* with the background signal noise *b* added

Arnison and Sheppard. A 3d vectorial optical transfer function suitable for arbitrary pupil functions. Optics communications, 211(1-6):53–63, 2002.

DLi, della Maggiora & Yakimovich et al., 2024, Coms. Eng.

Dataset

Super-resolution Inverse Problems are III-posed Widefield (SIM) G

12

What colour are the dresses?

Valid option 1

Valid option 2

From Chang et al. 2023, CVPR

Super-resolution Microscopy using Physics-informed Diffusion Probabilistic Models

PI-DDPM Performance on Benchmarks

 Table S1. Performance on Simulated Microscopy using BioSR Test Set

Metric / Model	Original	Richardson-Lucy	U-Net	DDPM	PI-DDPM
PSNR	16.127	13.394	18.301	20.446	20.217
MS-SSIM	0.745	0.684	0.812	0.859	0.859
NRMSE	0.156	0.214	0.122	0.095	0.098

Table 1: Performance on Widefield Microscopy using BioSR Test Set

Metric / Model	Original	U-Net	DDPM	PI-DDPM (ours)
PSNR	18.649	19.706	23.703	23.974
MS-SSIM	0.628	0.652	0.784	0.795
NRMSE	0.147	0.126	0.070	0.069

DLi, della Maggiora & Yakimovich et al., 2024, Coms. Eng.

PI-DDPM Performance on Wild Data (dSTORM)

DLi, della Maggiora & Yakimovich et al., 2024, Coms. Eng.

PI-DDPM Performance on Wild Data (dSTORM)

Table 2: Performance on dSTORM Test Set. Error stands for standard deviation.

Metric / Model	Original	U-Net	DDPM	PI-DDPM (ours)
PSNR	16.487	16.712	15.541±0.232	$16.778 {\pm} 0.807 \\ 0.612 {\pm} 0.039 \\ 0.145 {\pm} 0.015$
MS-SSIM	0.293	0.479	0.638±0.007	
NRMSE	0.150	0.146	0.167±0.005	

DLi, della Maggiora & Yakimovich et al., 2024, Coms. Eng.

CVDM: Diffusion Schedule can be learned directly from the data

 noise added at each timestep is controlled by a variance schedule, instead of guessing it we propose to learn it from the data

CVDM: Diffusion Schedule can be learned directly from the data (a) CCP structures.

Metric / Model	DFCAN	CDDPM	CVDM (ours)
MS-SSIM (†)	0.957	0.952	0.955
MAE (\downarrow)	0.006	0.007	0.007
Resolution (nm) (\downarrow)	107	<u>100</u>	96

(c) MT structures.

Metric / Model	DFCAN	CDDPM	CVDM (ours)
$\begin{array}{l} \text{MS-SSIM} (\uparrow) \\ \text{MAE} (\downarrow) \\ \text{Resolution (nm)} (\downarrow) \end{array}$	0.901	0.857	0.887
	0.033	0.042	0.04
	127	<u>101</u>	97

(b) ER structures.

Metric / Model	DFCAN	CDDPM	CVDM (ours)
$MS-SSIM (\uparrow) MAE (\downarrow) Resolution (nm) (\downarrow)$	$ \begin{array}{r} 0.928 \\ 0.033 \\ 165 \end{array} $	0.920 0.033 157	0.934 0.032 152

(d) F-actin structures.

Metric / Model	DFCAN	CDDPM	CVDM (ours)
$\begin{array}{l} \text{MS-SSIM} (\uparrow) \\ \text{MAE} (\downarrow) \\ \text{Resolution (nm)} (\downarrow) \end{array}$	<u>0.853</u>	0.831	0.863
	0.049	0.049	0.043
	151	<u>104</u>	98

della Maggiora & Yakimovich et al., 2024, ICLR

CVDM: Diffusion Schedule can be learned directly from the data

• Schedule can be different for different parts of the image, which allows us to obtain uncertainty quantification

della Maggiora & Yakimovich et al., 2024, ICLR

Bringing Algorithms to Clinics with DL in UTI

Nat. Rev. Urol.2010

- UTIs are among the most common bacterial infections worldwide
- 1 in 3 women will have at least 1 UTI by 24 years of age
- 40-50% of women will experience one UTI during their lifetime
- 44% experiencing recurrences
- Rate of emergency admissions due to UTI has almost doubled to 60/100,000 in the last five years.
- In 2012/13 unplanned admissions for UTIs cost £432 million per year.
- Leading cause of sepsis

Barrier: Objects in urine are translucent!

Clinical Microscopy of Urine Samples

Dr. Harry Horsley

Adrian Urbański

Trina De

Light passing through the Specimen Changes its Phase

Light passing through the Specimen Changes its Phase

• The phase shift can be captured by

<u>Hardware</u>:

Phase-Contrast Microscopy Quantitative Phase Imaging (QPI) • <u>Software</u> (data from multiple Z-planes):

Transport-of-Intensity Equation (TIE):

$$-k\frac{\partial I(x,y;z)}{\partial z} = \nabla_{(x,y)} \cdot \left[I(x,y;z) \nabla_{(x,y)} \varphi(x,y;z) \right]$$

where (x,y) are spatial coordinates, z is the defocus distance, k is a wave number $(2\pi/\lambda)$, ϕ – phase;

Given that \mathbf{z} and $\boldsymbol{\lambda}$ can be connected as $\boldsymbol{\xi}$ and $\boldsymbol{x}, \boldsymbol{y}$ as \boldsymbol{x} TIE can be reformulated as:

 $-2\pi \frac{\partial I(\mathbf{x};\xi)}{\partial \xi} = \nabla_{\mathbf{x}} \cdot \left[I(\mathbf{x};\xi) \nabla_{\mathbf{x}} \varphi(\mathbf{x};\xi) \right]$ Solution can be obtained using CVDM

della Maggiora & Yakimovich et al., 2025, AAAI

Quantitative Phase can be Retrieved from Chromatic Aberrations

della Maggiora & Yakimovich et al., 2025, AAAI

Take-home Messages I:

- The transformation from widefield microscopy to SRM can be formulated as an inverse problem and solved using generative deep learning with SRM as GT.
- Diffusion models achieve state-of-the-art performance on this task.
- Their performance can be further improved by incorporating a physical model of image acquisition into the loss function.
- One of the trickiest hyperparameters in diffusion models the noise schedule can be learned from the data directly.
- As a side benefit, this parameter can provide uncertainty of the model on a per-pixel basis.
- Phase can be captured by combining generative AI and a simple RGB camera, allowing rapid application in clinics.

Recent AI Model Research has been Dominated by Scale

source: nvidia.com

Inverse Problems can also be Addressed by Regression

We can approximate

$$u \approx \overline{u} = \left(K^T K + \varepsilon I\right)^{-1} K^T \overline{b}$$

Pseudo-differentiable operator

Inverse convolution becomes:

 $A^{-1} \approx \left(K^T K + \varepsilon I \right)^{-1} K^T$

Next, we could use Beylkin, Coifman, and Rokhlin (BCR) Representation to perform wavelet decomposition:

BCR Decomposition can be Approximated by NN

Fan et al. 2019 have shown that $conv[2, 2p, 2](\xi)$ can replace the multiplication with $(W^{(l)})^T$ The multiplication with the matrix of A(l)

can approximated with local convolution operators $LC[2,nb,1](\xi)$

The truncation $u(L_0)$ can be represented as dense connection

 $Dense^2 \left[1,1\right] \left(V^{L_0}\right)$

Li & Yakimovich et al., ECCV 2024

Multi-Stage Residual BCR Net (m-rBCR)

The Lean m-rBCR Performs 2nd Best with Fraction of Parameters

Model	Params. (\uparrow)	Runtime	BioSR	(sim.)	Image	Net(sim.)	W-C	(real)	dSTORM(rea	al)
			PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	
RL	N/A	0.0835	13.39	0.48	12.74	0.78	N/A	N/A	N/A	
s-rBCR	0.086 (ours)	0.0019	20.28	0.59	20.84	0.83	17.67	0.57	19.55	
m-rBCR	0.237 (ours)	0.0036	24.89	0.78	$\underline{21.41}$	0.86	23.10	0.70	20.13	
CARE	0.333	0.0039	22.15	0.65	18.47	0.74	21.53	0.66	19.62	
DnCNN	0.556	0.0056	21.41	0.70	19.70	0.84	19.34	0.63	17.46	
Noise2Noise	1.227	0.0068	16.07	0.57	16.24	0.60	15.07	0.57	18.06	
MIMO-U-Net	6.807	0.0087	23.95	0.78	22.35	0.88	19.17	0.67	18.91	
U-Net	7.780	0.0241	21.89	0.73	19.23	0.75	18.17	0.63	19.62	
RCAN	15.334	0.0281	21.71	0.64	19.78	0.91	20.51	0.58	19.26	
MPRNet	20.127	0.0173	21.44	0.63	20.12	0.83	21.53	0.55	18.54	
DDPM L_2	23.988	1.0968	21.85	0.65	20.22	0.78	$\underline{22.27}$	0.73	17.46	_
ESRGAN	49.841	0.0147	19.82	0.59	18.95	0.76	21.17	0.59	<u>19.93</u>	#

Rui Li

30

Li & Yakimovich et al., ECCV 2024

The Lean m-rBCR Performs 2nd Best with Fraction of Parameters

Rui Li

Take-home Messages II:

- Smaller Deep Learning models can be competitive while requiring a fraction of compute and training data.
- Microscopy images may require representations different from natural images, so alternative representations should be explored.

BioMed Image Analysis: Who has time for data annotation?

Binocular microscopy can turn into a 3D imaging with DL

Rui Li

●Li & Yakimovich et al., 2024, Sci. Rep.

In-focus Pixels can be Selected using Advanced Microscopy

Lateral change in contrast can be detected with Autofocus algorithms

Rui Li

Weak-labeling pipeline as a CNN

Weak-labeling pipeline as a CNN

Rui Li

Take-home Messages III:

- Deep learning is rapidly advancing Life Science research but requires large annotated datasets
- These labels can be used more efficiently using approaches like weak labelling, semi-supervised learning and self-supervised learning
- Conventional algorithms can be used to produce weakly labelled datasets in microscopy

Molecular labelling as Ground Truth

Fluorescence upon Infection

Signal

Ground Truth

Deep Learning can be Used to Detect Infected Cells From Nuclear Signal

Generalisation across stainings

Andriasyan, Yakimovich et al. iScience 2021

GFP Signal can be Predicted Directly using Generative AI or Regression DL (Virtual Staining)

Wyrzykowska & Yakimovich. BioRxiv 2024

To expand this idea to other viruses and reporters, we proposed the Virus Infection Reporter Virtual Staining Benchmark

Take-home Messages IV:

- Molecular markers can be efficiently used as Ground Truth
- Virus infection can be detected quasi-label-free

Addressing Data-hungry Algorithms with Viruses Computer Science

Josef Steppan - Own work, CC BY-SA 4.0 https://commons.wikimedia.org/w/index.php?curid=64810040

> -5 -5 Π

Modified National Institute of Standards and Technology database

- 60,000 training images
- 10,000 testing images

- ≤ 50 Cells
- ~100-1000 particles / cell
- Focus on Subcellular Structures
- Facilitate Transfer Learning

Barrel-shaped core

Superior lateral resolution provides an excellent detection entry point

D LoG VACV particle detection

Χ

ImageJ -Fiji

Yakimovich et al. mSphere 2020

Once measured, Intensities can be analyzed in a linear fashion (binning)

Yakimovich et al. mSphere 2020

MNIST can be repurposed for Transfer Learning 01234 56789 256 **ReLU Conv1** 16 9x9 **Primary Caps** 99.6% 2... <5 ≥5 Dataset 20 Annotation Mimicry Embedding c3 c4 c1 c2 Weights Transfer Linear Interpolation + padding Cell-associated 256 accuracy ReLU Conv1 96.5% Cell-16 9x9 **Primary Caps** channel 2... free associated IST mimicry em 20 Cell-free

Yakimovich et al. mSphere 2020

CapsNet architecture allows visualization of features learned from the dataset

Take-home Messages V:

- Deep learning is rapidly advancing Life Science research
- Changes in morphology picked up and summarised by DNN
- Discriminators combined with generators can assist discovery within the wild datasets

Acknowledgements: MLID group

MLID Group:

- Jacob Anter
- Trina De
- Gabriel della Maggiora
- Ashkan Mokarian
- Adrian Urbański
- Rui Li
- Martina Radoynova

PhD Alumni:

- Rui Li MSc Alumni
- Maria Wyrzykowska
- Adrian Urbanski
- Nikita Deshpande
- Vaibhav Sharma
- Subasini Thangamani

Competitive Funding:

HELMHOLTZAI

CASUS Open Project

Helmholtz Foundation Model Initiative

Competitive HPC Funding:

nature portfolio

Special Collection Call for Papers

Annotated Optical Microscopy Datasets

Scientific Data

Balazs Harangi, Artur Yakimovich

https://go.nature.com/4hyDnNK

