

Direct measurement of the ¹⁹F(p,α)¹⁶O reaction

Teodora Madgearu PhD student ELI-NP

¹⁹F(p,α₀)¹⁶O reaction measured at INFN – LNS

¹⁹F(p, $\alpha_{\gamma,\pi}$)¹⁶O upcoming measurement at IFIN - HH

Why is Fluorine important for astrophysics?

- AGB star nucleosynthesis;
- s-process elements analysis.

Each channel and its contribution to the total reaction rate. The black line corresponds to $R/R_{TOT} = 1$. At very low temperatures, the (p,α_0) channel (red line) dominates the total rate. The (p,α_{γ}) channel (blue line) became dominant at least above T9 \approx 0.2, while the (p,α_{π}) channel (green line) gives a maximum contribution of 20%.

Lombardo, I., Dell'Aquila, D., Di Leva, A., et al. 2015, PhLB,748, 178 Spyrou, K., Chronidou, C., Harissopulos, S., et al. 2000, EPJA,7, 79

- ¹⁹F beam, energy range from 9 up to 18.5 MeV;
- Spot size on target of 1 mm;
- Intensities around 1 5 nA;
- Thin self supported polyethylene targets (CH₂) of about 100 μg/cm²;
- Target placed at 90 degrees with respect to beam direction.

¹⁹F(p, α_0)¹⁶O reaction measured at INFN - LNS

LHASA:

- YY1 detector
- 300 μm thick
- 16 strips

- 96 channels of associated electronics
- 10-34 degrees angular coverage

Beam:

• Beam current is measured by means of a Faraday cup placed behind the target and a -300 V suppression voltage is applied to reduce secondary electron effects.

Target:

- Few μm thin CH₂;
- Photodiode placed at 45 degrees with respect to beam direction Used to check the number of particles in the target and its degradation.

Angular distribution for 750 keV in CMS

The number of reactions is calculated by integrating the scaled Legendre polynomial.

$$\sigma = \frac{N_{REACTIONS}}{N_{BEAM} \cdot N_{TARGET}}$$

PRELIMINARY

10

¹⁹F(p, $\alpha_{\gamma,\pi}$)¹⁶O upcoming measurement at IFIN - HH

- 14 beam time days approved at the IFIN-HH 3 MV Tandem accelerator;
- Lithium beam energy: 8-12 MeV for calibrations;
- Fluorine beam energy: 7-15 MeV;
- Fluorine beam intensity: 5 pnA;
- Thin self suported CH₂ target;
- Online monitoring system of the target;
- ELISSA and LHASA coupled together for particle detection;
- Standard mesytesc electronic chain.

ELISSA: • X3 detector • 1000 µm thick • 4 PSD strips

¹⁹F(p, $\alpha_{\gamma,\pi}$)¹⁶O upcoming measurement at IFIN - HH

¹⁹F(p, $\alpha_{\gamma,\pi}$)¹⁶O upcoming measurement at IFIN - HH

GROOT: MC tool for nuclear physics:

- based on G4 and ROOT
- user-friendly Qt GUI
- n-body MC generator
- detector resolution
- ASCII and ROOT output

A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT – Lattuada D. et al DOI: 10.1051/epjconf/201716501034

¹⁹F(p, $\alpha_{\gamma,\pi}$)¹⁶O upcoming measurement at IFIN - HH

18.5 MeV

Summary

- Fluorine important for AGB star nucleosynthesis and s-process elements analysis;
- The discrepancy between the previous data sets in ¹⁹F(p,α₀)¹⁶O reaction is solved;
- We are confident that we can separate α_{v} and α_{π} in the upcoming experiment.

Thank you!

Direct measurement of the ${}^{19}F(p,\alpha){}^{16}O$ reaction

T. Madgearu for the collaboration:

G. L. Guardo, C. Matei, D. Lattuada, M. La Cognata, D. L. Balabanski, S. Romano, L. Lamia, R.G. Pizzone, A. Tumino