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* Modelling stars: 1D vs 3D

e Setup choices and the PROMPI code

* A new set of Ne-shell simulations

* Kinematics and abundance profiles

* Evolution of the convective boundaries

* From 3D to 1D : parametrizing the entrainment law
e Conclusions



Stellar evolution models: the limits of 1D

Advantages: Disadvantages:

e can model the full star  spherical symmetry assumed

* can cover the entire lifetime e parametrized physics for multi-D
* easily compared to obsevations processes

* can explore mass and metallicity * cannot model turbulence
* used for progenitor models | —

What's missing?

* self-consistent physical descriptions of
mass loss, convection, rotation, magnetic
fields, opacity, binarity (and their interplay)
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3D hydrodynamics models

Modelling a 3D box enclosed in / enclosing a star

Advantages:

* deviations from spherical
symmetry

* can model fluid instabilities

* can include naturally 3D
processes (convection,
turbulence) without
assuming any prescription

Disadvantages:
* high computational cost

* [imited by fluid dynamical
timescales

e cannot simulate full star or
entire lifetime

* more difficult to compare results
to observations
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Why employ hydrodynamics models?

Multi-D processes can be reproduced:
* Convection, rotation, magnetic fields

* No need to assume prescriptions as in 1D e.g. mixing length theory (MLT),
convective boundary mixing (CBM)

— possible to use 3D data to constrain 1D parametrization
* Turbulent mixing leading to convection
* Turbulent entrainment at convective boundaries
* Internal gravity waves



321D: the link between 1D and multi-D

1D models: multi-D models:

* spherical symmetry — * break the symmetry
: L. Initial : :
* assuming prescriptions / . * targetted simulations
parametrizations conditions

* short time + small
* subjected to uncertainties space extension

improve theoretical
prescriptions /
estimate coefficients




Possible choices for a setup

First of all, the physics of the problem:
— stellar mass, age, core or burning layers...

Then:
* Initial conditions from a 1D stellar evolution model
* Problem geometry and resolution: plane-parallel, spherical...

— be careful with singularities %

* Boundary conditions: periodic, reflective...
* Gravity: constant, polynomial...

Muller (2020)
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The PROMPI 3D Hydrodynamics Code

prOMPI solves the Euler equations (inviscid approximation) e P RO met h eus MPI

by: .. . "
* finite-volume, time explicit,

op v )
o TV ew= Eulerian, PPM implementation
p% L Vo= Vpipe « domain decomposition for

. parallel computing (MPI)

—t+ -VE +V -(pv) = g+ plénuc + €)); . . H :
" TP PETAEET M mem e e Cartesian, spherical or cylindrical
)05 VX = &, geometry

ot
* reflective or periodic boundary

PROMPI : Meakin, Arnett+ 2007-onward " . .
S, P onwares conditions, velocity damping

PROMETHEUS : Fryxell, Mueller, Arnett 1989
PPM method : Colella & Woodward 1984



Simulations of a neon-burning shell

Modelling a 3D cell in the Ne-shell of 15 M star with PROMPI:
* Plane-parallel “box-in-a-star” of (0.64 x 108 cm)3

* Multiple simulations with different resolutions (mesh size) and nuclear
energy generation rates (“boosting factors”)

resolution
We focus on reproducing/studying: >
e Turbulent convection b°°iti“g
* Convective boundary mixing
* Turbulent entrainment
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Kinematic study: velocity movie

||vell| , time = 887 s x10 boosting case
Vertical slice of the cell:

) . 3.50e+06
velocity magnitude
- 3.00e+06
in colour scale.
F 2.50e+06
We can see: L 2.00e+06
Internal gravity waves L 1 500406
Boundaries 1000406
5.00e+-05
—> Boundaries are moving!
0.00e+00

0.1 0.2 0.3 0.4 0.5 0.6
Y (10°cm)

10



Chemical study: abundance movies
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Abundance profiles

* We study the mass fraction of the most abundant isotopes
* The profiles are used to define the convective boundaries

Ne-shell abundances, t=0 s Ne-shell mean atomic mass, t=0 s
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Evolution of the boundary locations

20l Ex1 512 | Ex10 512
3.9 I i _J//- . .
: * The location of the boundaries
F moves with time, because the
£ convective zone is growing:
this is entrainment
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Computing the entrainment law
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* Entrainment rate can be
parametrized with a
simple law using the
“bulk Richardson
number”, representing
the “stiffness” of the
boundary

* Then the law can be
used to improve
convection in 1D models

1D ->3D > 1D



Conclusions

* 3D hydrodynamics codes like PROMPI reproduce turbulent flow for
short timescales but with great accuracy

* The interaction between nuclear burning and turbulent flow can be
studied in unprecedented detail

 We completed the first detailed 3D simulations of the Ne-shell:
different resolutions and luminosity boosting factors

 The entrainment rate is correlated to the boosting factor and can be
parametrized with a law useful for 1D

For the future: - build a library of burning shells with the PROMPI code
(C- and O-shells already present in the literature)

 complete the loop 1D - 3D - 1D and continue - ... .



