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Preface

These lecture notes are intended for an advanced astroplo@irse on Stellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goaltsprovide an overview of the physics
of stellar interiors and its application to the theory ofllstestructure and evolution, at a level appro-
priate for a third-year Bachelor student or beginning Mastadent in astronomy. To a large extent
these notes draw on the classical textbook by Kippenhahn &é&ke(1990; see below), but leaving
out unnecessary detail while incorporating recent asysighl insights and up-to-date results. At
the same time | have aimed to concentrate on physical insighér than rigorous derivations, and
to present the material in a logical order, following in ptmé very lucid but somewhat more basic
textbook by Prialnik (2000). Finally, 1 have borrowed sordeds from the textbooks by Hansen,
Kawaler & Trimble (2004) and Salaris & Cassissi (2005).

These lecture notes are evolving and | try to keep them uptt tfayou find any errors or incon-
sistencies, | would be grateful if you could notify me by ehf@iR.Pols@uu.nl).

Onno Pols
Utrecht, August 2008
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.6743x 108 cmigls?
speed of light in vacuum ¢ 2.99792458< 10°cm st
Planck constant h 6.626 069x 102" erg s
radiation density constant a 7.56578x 10 erg cnT® K™

Stefan-Boltzmann constanto = ac 5.67040x 10°° erg cnt? s 1 K™
Boltzmann constant 1.380650x 10716 erg K1
electron volt 1602176 5% 10712 erg

electron charge 4.80326x 1010 esu

1.44000x 10" eV cm
9.109382x 1028 g
1.6605388x 10724 g
16726216x 1024 g
1.6749272x 1024 ¢

6.644 656 2x 1024 g

electron mass
atomic mass unit
proton mass
neutron mass
a-particle mass

33332%°2~%

Table 2. Astronomical constants, mostly from the Astronomical Afraa (2008).

Solar mass M, 1.9884x10%3¢g

GM, 1.32712442x 10% cmd 52
Solar radius R 6.957x 109 cm
Solar luminosity L, 3.842x 10 erg st
year yr 315576x 10" s
astronomical unit AU #495978 71x 10'® cm
parsec pc $85678x 10'8 cm




Chapter 1

Introduction

This introductory chapter sets the stage for the coursebantly repeats some concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-gearselntroduction to stellar structure and
evolutionby F. Verbunt).

1.1 Introduction

Thegoal of this course on stellar evolution can be formulated asvad:

to understand the structure and evolution of stars, and thxsiervational properties
using known laws of physics

This involves applying and combining ‘familiar’ physic®m many diterent areas (e.g. thermodyam-
ics, nuclear physics) under extreme circumstances (fiighigh p), which is part of what makes
studying stellar evolution so fascinating.

What exactly do we mean by a ‘star'? A useful definition for puepose of this course is as follows:
a star is an object that

e radiates energy from an internal source
¢ is bound by its own gravity

This definition excludes objects like planets and cometsalbge they do not comply with the first
criterion. In the strictest sense it also excludes brownrésyavhich are not hot enough for nuclear
fusion, although we will briefly discuss these objects. (Fbeond criterion excludes trivial objects
that radiate, e.g. glowing coals).

Animportant implication of this definition is that stars magolve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain ammtoof time on its internal energy supply, and
eventually dies when this supply is exhausted. As we shallasecond implication of the definition
is that stars can have only a limited range of masses, betw@dnand~100 times the mass of the
Sun. Thdife and deattof stars forms the subject matter of this course. We will dmnigfly touch on
the topic ofstar formation a complex and much less understood process in which théepnstio be
solved are mostly very ffierent than in the study of stellar evolution.



1.2 Observational constraints

What do we know from observations?

e photometric measurements yield the apparent brightness stér, i.e. the energy flux re-
ceived on Earth, in dierent wavelength bands. These are usually expressed astuciagn
e.g.B, V, I, etc. Applying a bolometric correction yields the appareoiometric flux, fuo (in
ergstcm).

e in some cases, the distandds known, e.g. from the parallax. The Hipparcos satellite ha
measured parallaxes with 1 milliarcsec accuracy of mora @ stars. Thduminosity Lof
the star (often expressed lip, = 3.85 x 10°3 erg's) then follows fromL = 47 d? fyq.

e from spectroscopy, either the overall shape of the spectuby detailed spectral-line anal-
ysis, theegffective temperature g can be measured. This is defined as the temperature of a
blackbody with the same energy flux at the surface of the atat,is a good measure for the
temperature of the photosphere. The photometric colossgile a (less accurate) estimate of
Ter. From the definition of £ective temperature it follows that

L=4arRoTy (1.1)

whereR s the radius of the star (often expressedrin= 6.96 x 10'°cm). Hence ifL andTeg
are measured, the stellar radius can be inferred.

o detailed spectral-line analysis of the measured spectamy®Id the surfacehemical com-
position of the star. Stellar compositions are usually expressedring of mass fractionk;,
wherei denotes a certain element. This is often simplified to spegfthe mass fractionX
(of hydrogen),Y (of helium) andzZ (of all heavier elements or ‘metals’), which add up to 1.

o for relatively nearby stars, interferometry can yield dirsnformation about stellar radii.

o for direct information about stellanasse®ne needs binary stars with measured radial velocity
variations (spectroscopic binaries). In particular focatied double-lined eclipsing binaries, in
which the spectral lines of both stars are seen and thatsfumtbre show eclipses, it is possible
to accurately measure (with 1-2 % accuracy is some cases):

— masses from fitting the radial-velocity curve
— radii from fitting the eclipse lightcurve

Together with a photometric or, better, spectroscopicrdatetion of Teg also the luminosity
of such binaries can be measured with high accuracy, indigperof the distance.

All observed properties are surface properties. Theref@eneed dheory of stellar structuréo
derive the internal properties of a star. However, somectlisdndows on the inside of a star exist:

¢ neutrinos which escape from the interior without interaction. Sq fae Sun is the only (hon-
exploding) star from which neutrinos have been detected.

e oscillations i.e. stellar seismology. Many stars oscillate, and theg@iency spectrum contains
information about the speed of sound waves inside the startterefore about the interior
density and temperature profiles. This technique has pedvatcurate constraints on detailed
structure models for the Sun, and is now also being appliedher stars.

2



In addition, the timespan of any observations is much smidén a stellar lifetime: observations
are like snapshots in the life of a star. The observed preggedf an individual star contain no
(direct) information about its evolution. The diversitysi&llar properties (radii, luminosities, surface
abundances) does, however, depend on how stars evolve,llagsvam intrinsic properties (mass,
initial composition). Properties that are common to a largmber of stars must correspond to long-
lived evolution phases, and vice versa. By studying samplestars statistically we can infer the
(relative) lifetimes of certain phases, which providestheo important constraint on the theory of
stellar evolution.

Furthermore, observations of samples of stars revealinearelations between stellar properties
that the theory of stellar evolution must explain. Most inrtpat are relations between luminosity and
effective temperature, as revealed by Hhertzsprung-Russell diagrgnand relations between mass,
luminosity and radius.

1.2.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important todkest the theory of stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of staithé vicinity of the Sun, for which the
Hipparcos satellite has measured accurate distancesisTdmsexample of &olume-limitedsample
of stars. In this observers’ HRD, the absolute visual magietMy is used as a measure of the
luminosity and a colour index® - V or V — |) as a measure for thdfective temperature. It is left
as an exercise to identify various types of stars and ewlythases in this HRD, such as the main
sequence, red giants, the horizontal branch, white dwetds,

Star clusters provide an even cleaner test of stellar @eoluT he stars in a cluster formed within
a short period of time (a few Myr) out of the same moleculaudiand therefore share the same age

10

Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcossstith d measured to< 10 %
accuracy.
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45Rtb@des, left panel), and a globular
cluster, M3 (right panel).

and (initial) chemical composition. Therefore, only theama&aries from star to star. A few examples
of cluster CMDs are given in Fig. 1.2, for a young open clugtee Pleiades) and an old globular
cluster (M3). As the cluster age increases, the most lunsimoain-sequence stars disappear and a
prominent red giant branch and horizontal branch appeagexptain the morphology of cluster HRDs
at different ages is one of the goals of studying stellar evolution.

1.2.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminositiesb{nary stars) we can plot these quantities
against each other. This is done in Fig. 1.3 for the companeihtiouble-lined eclipsing binaries for
which M, RandL are all measured wit 2% accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is tight. Most of the stars in Fig. 1.3 are
long-lived main-sequence stars; the spread in radii forsembetween 1 andM,, results from the
fact that several more evolved stars in this mass range atisfysthe 2 % accuracy criterion. The
observed relations can be approximated reasonably welblbeplaws:

LeM3®  and Ro M2 (1.2)

Again, the theory of stellar evolution must explain the teti€e and slopes of these relations.

1.3 Stellar populations

Stars in the Galaxy are divided intofifirent populations:

e Population I: stars in the galactic disk, in spiral arms amdrélatively young) open clusters.
These stars have agesl(®® yr and are relatively metal-rictz(~ 0.5 — 1Z,)

¢ Population II: stars in the galactic halo and in globulastdus, with ages 10°yr. These stars
are observed to be metal-pod ¢ 0.01- 0.1Z;).
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relatiémscomponents of double-lined eclipsing
binaries with accurately measurét] RandL.

An intermediate population (with intermediate ages andatfieities) is also seen in the disk of the
Galaxy. Together they provide evidence for @teemical evolutiorof the Galaxy: the abundance
of heavy elementsZ) apparently increases with time. This is the result of cluainénrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis ‘Bopulation III’ consisting of the
first generation of stars formed after the Big Bang, contejnonly hydrogen and helium and no
heavier elements (‘metal-freeZ, = 0). No metal-free stars have ever been observed, probakelyadu
the fact that they were massive and had short lifetimes aiuklgenriched the Universe with metals.
However, a quest for finding their remnants has turned up nvany metal-poor stars in the halo,
with the current record-holder having an iron abunda¥eg= 4 x 10°° solar.

1.4 Basic assumptions

We wish to build a theory of stellar evolution to explain thigservational constraints highlighted
above. In order to do so we must make some basic assumptions:

e stars are considerd to lieolatedin space, so that their structure and evolution depend amly o
intrinsic properties (mass and composition). For most single statsiGalaxy this condition
is satisfied to a high degree (compare for instance the radfitiee Sun with the distance to
its nearest neighbour Proxima Centauri, see exercisesyetAn, for stars in dense clusters, or
in binary systems, the evolution can be influenced by intemaavith neighbouring stars. In
this course we will mostly ignore these complicatirgeets (many of which are treated in the
Master course oBinary Stars.

o stars are formed withlaomogeneous compositicareasonable assumption since the molecular
clouds out of which they form are well-mixed. We will oftensasne a so-called ‘quasi-solar’
composition X = 0.70,Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity dow# £00.015. In practice there is relatively
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little variation in composition from star to star, so thaetimitial mass is the most important
parameter that determines the evolution of a star. The ceitipo, in particular the metallicity
Z, is of secondary influence but can have importtdfgats especially in very metal-poor stars
(see§ 1.3).

e spherical symmetrywhich is promoted by self-gravity and is a good approxiaratior most
stars. Deviations from spherical symmetry can arise if oentral forces become important
relative to gravity, in particular rotation and magnetiddie Although many stars are observed
to have magnetic field, the field strength (even in highly netiged neutron stars) is always
negligible compared to gravity. Rotation can be more imgnattalthough for the majority of
stars (e.g. the Sun) the forces involved are small compargdavity. However, some rapidly
rotating stars are seen (by means of interferometry) to bstauntially flattened.

1.5 Aims and overview of the course

In the remainder of this course we will:
¢ understand the global properties of stars: energeticsiarestales

o study the microphysics relevant for stars: the equatioriaiésnuclear reactions, energy trans-
port and opacity

¢ derive the equations necessary to model the internal ateicf stars
e examine (quantitatively) the properties of simplified Isteinodels

e survey (mostly qualitatively) how stars offtirent masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

e discuss a few ongoing research areas in stellar evolution

Suggestion for further reading

The contents of this introductory chapter are also largelyeced by Chapter 1 ofdfaLnik, which
provides nice reading. (Be aware, however, that the lowdragthe mass-luminosity relation shown
in Fig. 1.6 is wrong, it has a slope that is too large!)




Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass eoraion, momentum conservation and
energy conservation to derive three of the fundamentadbstsiructure equations. We shall see that
stars are generally in a state of almost complatehanical equilibriumwhich allows us to derive

and apply the importantirial theorem We consider the basic stellar timescales and see that most
(but not all) stars are also in a state of energy balancedctidkrmal equilibrium

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all intgphysical quantities (such as density
pressureP, temperaturd’, etc) depend only on one radial coordinate. The obviousdinate to use
in a Eulerian coordinate system is the radius of a spherteal,s (€ 0...R).

In an evolving star, all quantities also depend on timmit this is not explicitly noted in the
following: a derivatived/dr (or d/dm) should be taken to mean the partial derivative with resfmect
the space coordinate, at constant time.

The principle of mass conservation (assuming a steady, stategnoring a time-varying mass
flow) yields the masgmof a spherical shell of thicknesl at radiusr (see Fig. 2.1) as

dm=pdV = pdnr’dr = c:j—r;n = 4nr?p. (2.1

Note thato = p(r) is not known a priori, and must follow from other conditioasd equations. The
differential form of the above equation is therefore the firstAmental equation of stellar structure.
Integration yields the masg(r) inside a spherical shell of radius

i
m(r) = f Anr?pdr’. (2.2)
0

Sincem(r) increases monotonically outward, we can alsora@¢ as our radial coordinate, instead
of r. Thismass coordinateoften denoted asy or simply m, is a Lagrangian coordinate that moves
with the mass shells:

r
m:=m = f 4nr?pdr’ (Me0...M) (2.3)
0

It is often more convenient to use a Lagrangian coordinateead of a Eulerian coordinate. The mass
coordinate is defined on a fixed interval,€ 0... M, as long as the star does not lose mass. On the
other hand depends on the time-varying stellar radRsFurthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the terivatives that appear in the stellar
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m-+dm

P(r+dr) N\,

Figure 2.1. Mass shell inside a spherically symmetric
star, at radius and with thicknesdr. The mass of the
shell isdm = 4rr?p dr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
dr also indicated.

evolution equations (e.g. equations for the compositidvg.can thus write all quantities as functions
ofm,i.e.r =r(m), p = p(m), P = P(m), etc.
Using the coordinate transformation—» m, i.e.

d d dr
the first equation of stellar structure becomes in terms ettiordinatem:
dr 1
- - 25
dm  4arlp (2:5)

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, whiclplies that gravity is the driving force
behind stellar evolution. In the general, non-sphericalecdhe gravitational acceleratighcan be
written as the gradient of the gravitational potentgak —V®, where® is the solution of the Poisson
equation

V2 = 4nGp.

Inside a spherically symmetric body, this reduceg te: |g] = d®/dr. The gravitational acceleration

at radiusr and equivalent mass coordinatds then given by
Gm

Spherical shells outsideapply no net force, so thaonly depends on the mass distribution inside

the shell at radius. Note thatg is the magnitude of the vect@rwhich points inward (toward smaller

r orm).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a starlNegton’s second law of mechanics.
The net acceleration on a gas element is determined by thefaiirforces acting on it. In addition to
the gravitational force considered above, forces resaihfthe pressure exerted by the gas surround-
ing the element. Due to spherical symmetry, the pressuoe$oscting horizontally (perpendicular to
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the radial direction) balance each other and only the predsuces acting along the radial direction
need to be considered. By assumption we ignore other fonetsrtight act inside a star (Sect. 1.4).
Hence the net acceleration="0r /0t of a (cylindrical) gas element with mass

dm=pdrdS (2.7
(wheredr is its radial extent andS is its horizontal surface area, see Fig. 2.1) is given by
idm=-gdm+ P(r)dS - P(r + dr)dS. (2.8)

We can writeP(r + dr) = P(r) + (dP/dr) - dr, hence after substituting eqgs. (2.6) and (2.7) we obtain
the equation of motiorior a gas element inside the star:

_Gm_1dP
r2  pdr’

(2.9)

Writing the pressure gradient in terms of the mass coordimety substituting eqg. (2.5), the equation
of motion is

f=———4m’—. (2.10)

Hydrostatic equilibrium  The great majority of stars are obviously in such long-liygthses of
evolution that no change can be observed over human lifstifi@is means there is no noticeable
acceleration, and all forces acting on a gas element inkiEstar almost exactly balance each other.
Thus most stars are in a state of mechanical equilibrium lvisienore commonly calletlydrostatic
equilibrium (HE).

The state of hydrostatic equilibrium, setting="0 in eq. (2.9), yields the secondfidirential
equation of stellar structure:

dpP Gm
ar = —r—zp, (2.11)
or with eq. (2.5)
dP Gm

A direct consequence is that inside a star in hydrostatidlibum, the pressure always decreases
outwards.

Egs. (2.5) and (2.12) together determine thechanical structuref a star in HE. These are
two equations for three unknown functions rof(r, P andp), so they cannot be solved without a
third condition. This condition is usually a relation beeweP andp called theequation of state
(see Chapter 3). In general the equation of state dependsedemperaturd as well, so that the
mechanical structure depends also on the temperaturédigin inside the star, i.e. on its thermal
structure. In special cases the equation of state is indimm¢rof T, and can be written aB =
P(o). In such cases (known as barotropes or polytropes) the aneztl structure of a star becomes
independent of its thermal structure. This is the case fatendwarfs, as we shall see later.
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Estimates of the central pressure A rough order-of-magnitude estimate of the central presssan
be obtained from eq. (2.12) by setting

dP Psui=Pe _Pc 1
dm M M’ 2
which yields

2GM?
Pe~ ——— 2.13

For the Sun we obtain from this estimd®g ~ 7 x 10°dyn/cm? = 7 x 10° atm.
A lower limit on the central pressure may be derived by wgtey. (2.12) as

dP  Gmdm _ d(sz) Gn?

& = ad dr -~ dr\an) o
and thus
d Gn? Gn?

The quantity¥(r) = P+ Gn?/(8ar%) is therefore a decreasing functionrofAt the centre, the second
term vanishes because « r3 for smallr, and hence?(0) = P.. At the surface, the pressure is
essentially zero. From the fact thHtmust decrease withit thus follows that

1 GM?
8t R
In contrast to eq. (2.13), this is a strict mathematical ltegalid for any star in hydrostatic equilibrium
regardless of its other properties (in particular, regesdlof its density distribution). For the Sun we
obtainP; > 4.4 x 10" dyn/cm?. Both estimates indicate that an extremely high centradqume is
required to keep the Sun in hydrostatic equilibrium. Réalisolar models show the central density
to be 24 x 107 dyn/cn?.

Pc > (2.15)

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibris violated: how fast do changes
to the structure of a star occur? The answer is provided byethmtion of motion, eq. (2.9). For
example, suppose that the pressure gradient that supperssar against gravity suddenly drops. All
mass shells are then accelerated inwards by gravity: thetstds to collapse in “free fall”. We can
approximate the resulting (inward) acceleration by

If R = N R
N — T~ 4| —
T2 |F

wherery is the free-fall imescale that we want to determine. Siate= g ~ GM/R? for the entire
star, we obtain

R [R
THN\EN /m‘ (2.16)

Of course each mass shell is accelerated affardnt rate, so this estimate should be seen as an
average value for the star to collapse over a distadc&his provides one possible estimate for the
dynamical timescalef the star. Another estimate can be obtained in a similar byagssuming that
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gravity suddenly disappears: this gives the timescaleh@ioutward pressure gradient to explode the
star, which is similar to the time it takes for a sound waveréwel from the centre to the surface of
the star. If the star is close to HE, all these timescales hhweait the same value given by eq. (2.16).
Since the average densjty= 3M/(47R%), we can also write this (hydro)dynamical timescale as

, R3 1 -1/2
Tdyn =~ m r5 (Gﬁ) . (217)

For the Sun we obtain a very small valuergf, ~ 1600 sec or about half an hour (0.02 days). This
is very much smaller than the age of the Sun, which is 4.6 Gy a@r5 x 10 sec, by 14 orders of
magnitude. This result has several important consequdacése Sun and other stars:

¢ Any significant departure from hydrostatic equilibrium shbvery quickly lead to observable
phenomena: either contraction or expansion on the dynérimascale. If the star cannot
recover from this disequilibrium by restoring HE, it shouldéd to a collapse or an explosion.

e Normally hydrostatic equilibrium can be restored after atulibance (we will consider this
dynamical stabilityof stars later). However a perturbation of HE may lead to &stle oscil-
lations on the dynamical timescale. These are indeed abdémthe Sun and many other stars,
with a period of minutes in the case of the Sun. Eq. (2.173 tedlthat the pulsation period is a
(rough) measure of the average density of the star.

e Apart from possible oscillations, stars are extremely e€lts hydrostatic equilibrium, since
any disturbance is immediately quenched. We can therelbfident that eq. (2.12) holds
throughout most of their lifetimes. Stars do evolve and hezdfore not completely static, but
changes occur very slowly compared to their dynamical tcakes Stars can be said to evolve
quasi-statically i.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is i@l theorem which is of vital impor-
tance for the understanding of stars. It connects two inapbrinergy reservoirs of a star and allows
predictions and interpretations of important phases iretlwution of stars.

To derive the virial theorem we start with the equation fodiostatic equilibrium eq. (2.12). We
multiply both sides by the enclosed volure= %nr3 and integrate ovem:

M M
dP Gm
4_.3 1
sar’—dm= -3 —dm 2.18
fo3’” dm 3fo r (2:18)

The integral on the right-hand side has a straightforwangsal interpretation: it is thgravitational
potential energyof the star, i.e. the energy required to assemble the starihgibbg matter from
infinity,

M
G
E@,,=—f0 dem (2.19)

The left-hand side of eq. (2.18) can be integrated by parts:
Ps Vs
f VdP=[V - P - f PdVv (2.20)
P 0
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wherec and s denote central and surface values. The first term vanishezubeV = 0 at the centre
and the pressure practically vanishes at the surfg@,) ~ 0. Combining the above equations we
obtain

Vs
—3[ PdV = Eg, (2.21)
0
or, sincedV = dm/p,
M
0o P

This is the general form of the virial theorem, which will peovaluable later. It tells us that that the
average pressure needed to support a star in HE is equ%li@,/v. In particular it tells us that a
star that contracts quasi-statically (that is, slowly egioto remain in HE) must increase its internal
pressure, sincley,| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We wil
show this in Ch. 3, but for the particular case of an ideal nimméc gas it is easy to see. The pressure
of an ideal gas is given by

P =nkT = 2 kT, (2.23)
pmy

wheren = N/V is the number of particles per unit volume, gnés mass of a gas particle in atomic
mass units. The kinetic energy per particleyis %kT, and the internal energy of an ideal monatomic

gas is equal to the kinetic energy of its particles. The ir@kenergy per unit mass is then
3kT 3P

U= —-—— = ——. 224

2umy  2p ( )

We can now interpret the left-hand side of the virial theokep 2.22) a#(P/p)dm = :% fudm:
%Eim, whereEj is the total internal energy of the star. The virial theoremahn ideal gas is therefore

Eint = _%Egr (2.25)

This important relation establishes a link between theitadwnal potential energy and the internal
energy of a star in hydrostatic equilibrium that consistanfideal gas. (We shall see later that the
ideal gas law indeed holds for most stars, at least on the sejonence.) The virial theorem tells
us that a more tightly bound star must have a higher intemelgy, i.e. it must béotter. In other
words, a star that contracts quasi-statically must getehottthe process. The full implications of this
result will become clear when we consider the total energy sthr in a short while.

Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temparature inside a star composed of ideal gagravigational energy of the star is found
from eq. (2.19) and can be written as
GM?
Egr = —r—— (2.26)
wherea is a constant of order unity (determined by the distributaimrmatter in the star, i.e. by
the density profile). Using eq. (2.24), the internal enerfiyhe star isEin; = 3k/(umy) [ Tdm =
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%k/(ymu)T_M, whereT is the temperature averaged over all mass shells. By thal #ireorem we
then obtain

— aumy GM

T= 3k R (2.27)
Takinga ~ 1 andu = 0.5 for ionized hydrogen, we obtain for the Slin~ 4 x 1(PK. This is the
average temperature required to provide the pressure shadded to keep the Sun in hydrostatic
equilibrium. Since the temperature in a star normally deeseoutwards, it is also an approximate
lower limit on the central temperature of the Sun. At thesaepgeratures, hydrogen and helium are
indeed completely ionized. We shall see thiatz 10’ K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exisish we can write generally as

U= oo, (2.28)
Jo

We have seen above that= % for an ideal gas, but it will turn out (see Ch. 3) that this iidraot
only for an ideal gas, but for all non-relativistic partisleOn the other hand, if we consider a gas of
relativistic particles, in particular photons (i.e. raita pressure)g = 3. If ¢ is constant throughout
the star we can integrate the left-hand side of eq. (2.21ptaim a more general form of the virial
theorem:

Eint = _%‘/J’Egr (2.29)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational ptisd energy, its internal energy and its
kinetic energyExin (due to bulk motions of gas inside the star, not the thermaians of the gas
particles):

Etot = Egr + Eint + Exin. (2.30)

The star is bound as long as its total energy is negative.

For a star in hydrostatic equilibrium we can &, = 0. Furthermore for a star in HE the virial
theorem holds, so th&y, andEiy; are tightly related by eq. (2.29). Combining egs. (2.29) ¢h80)
we obtain the following relations:

- _ - 3 R 1
Etot = Eint + Egr = TElnt = (1- §¢)Egr (2.31)
As long asp < 3 the star is bound. This is true in particular for the impottease of a star consisting
of an ideal gas (eq. 2.25, for which we obtain

Eot = Eint + Egr = — Eint = %Egr <0 (2.32)

In other words, its total energy of such a star equals halfsaofiiavitational potential energy.
From eq. (2.32) we can see that the virial theorem has thewolg important consequences:

¢ Gravitationally bound gas spheres musthmt to maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The morepaotnsuch a sphere, the more
strongly bound, and therefore the hotter it must be.
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¢ A hot sphere of gas radiates into surrounding space, therefgtar must lose energy from its
surface. The rate at which energy is radiated from the serfatheluminosityof the star. In
the absence of an internal energy source, this energy lostequal the decrease of the total
energy of the start. = —dE;/dt > 0, sincelL is positive by convention.

e Taking the time derivative of eq. (2.32), we find that as a eqagnce of losing energy:
Egr=-2L <0,
meaning that the staontracts(becomes more strongly bound), and
Eint =L >0,

meaning that the stayets hotter— unlike familiar objects which cool when they lose energy.
Therefore a star can be said to haveegative heat capacityHalf the energy liberated by
contraction is used for heating the star, the other halfdsatad away.

For the case of a star that is dominated by radiation presauardind thatEi,: = —Eg,, and there-
fore the total energ¥:: = 0. Therefore a star dominated by radiation pressure (or generally,
by the pressure of relativistic particles) is only margindlound. No energy is required to expand or
contract such a star, and a small perturbation would be dntugender it unstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are present in a star due to nuaaations taking place in the interior, then
the energy loss from the surface can be compensate€d:L,,c = —dE,/dt. In that case the total
energy is conserved and eq. (2.32) tells us fhat = Ejy = E@,r = 0. The virial theorem therefore
tells us that bottEj; andEg are conserved as well: the star cannot, for example, cdrdrat cool
while keeping its total energy constant.

In this state, known athermal equilibrium(TE), the star is in a stationary state: it neither expands
nor contracts, and it maintains a constant interior termtpeza\We shall see later that this temperature
is regulated by the nuclear reactions themselves, whicloinbination with the virial theorem act
like a stellar thermostat. Main-sequence stars like theg&@ann thermal equilibrium, and a star can
remain in this state as long as nuclear reactions can supplggcessary energy.

2.4 Local energy conservation

The previous section dealt with the global energy budget sfaa We have still to consider the
conservation of energy on a local scale in the stellar iotewhich leads us the third stellar structure
equation.

The first law of thermodynamics states that the internal ggnef a system can be changed by
two forms of energy transfer. heat and work. Heat may be addezktracted, and work may be
done on the system or performed by the system, and involvearge of its volume: expansion or
contraction. Consider a spherical, Lagrangian shell engieé star of constant madsw By §f we
denote a change in a quantityoccurring in a small time intervait. If uis the internal energy per
unit mass, then the first law can be written as

sudm= 6Q + sW (2.33)
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wheresQ is the amount of heat absorbed or emitted by the shell,s&ids the work done on the

shell,

SW = —Ps(dV) = —Pé(i)dmz Ezép dm (2.34)
p p

In the last equationlVV = dmy/p is the volume of the mass element, atdis constant. We note that
compressiondp > 0) involves an addition of energy, and expansion is achietelde expense of the
element’s own energy.

Changes in the heat content of the sla€llcan occur due to a number of sources and sinks:

Heat is added by the release of nuclear energy, if availalie. rate at which nuclear energy
is produced per unit mass and per second is writtee,@s The details of nuclear energy
generation will be treated in Ch. 5.

Heat can be removed by the release of energetic neutrinashwhcape from the stellar interior
without interaction. Neutrinos are released as a by-prbdiissome nuclear reactions, in which
case they are accounted for éq,. But neutrinos can also be released by weak interaction
processes in very hot and dense plasmas. This type of neyraduction plays a role in late
phases of stellar evolution, and the rate at which theseinesttake away energy per unit mass
is written ase,.

Finally, heat is absorbed or emitted according to the balafdeat fluxes flowing into and out
of the shell (see Fig. 2.2). We define a new variable|dloal luminosity | as the rate at which
energy in the form of heat flows outward through a sphere dfiead Therefore at the surface
| = L while at the centré = 0. Normally heat flows outwards, in the direction of decregsi
temperature. Thereforeis usually positive, but under some circumstances (e.glirapof
central regions by neutrino emission) heat can flow inwamsaning that is negative.

We can therefore write:

0Q = enucdmét — €, dmsét + I(m) 5t — I(m + dm) 6t,

with [(m+ dm) = I(m) + (dl/dm) - dm, so that

dl
6Q - (Enuc - EV - ﬁ) dm(st (235)

Figure 2.2. Energy generation and heat flow into and
out of a spherical mass shell.
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Substituting egs. (2.34) and (2.35) into eq. (2.33) andddig by dmwe obtain

ou P6 ! ot
- —=0p=|€uc—6€6 — —|dt,
p2 IY nue ~ &~ o

which in the limitét — 0 yields us the third equation of stellar evolution:

d ou, Pip

Wn = €nuc — €& — at + p2 8'[ (236)

In thermal equilibrium(see Sec. 2.3.2), the star is in a stationary state and thkeederivatives
vanish. We then obtain a much simpler stellar structure tgua

dl
dm
If we integrate this equation over the mass we obtain

= €nuc — &- (2.37)

M M
L = f Gnucdm— f €y de Lnuc— LV (238)
0 0

which defines the nuclear luminosity,,c and the neutrino luminosity,. Neglecting the neutrino
losses for the moment, we see that thermal equilibrium iespthatL = Lny that is, energy is
radiated away at the surface at the same rate at which it dupsal by nuclear reactions in the
interior.

2.5 The timescales of stellar evolution

Three important timescales are relevant for stellar eimhtassociated with changes to the mechani-
cal structure of a star (described by eq. 2.10), changes tbdétmal structure (described by eq. 2.36),
and changes in its composition, which are still to be disedss Ch. 5.

The first timescale was already treated in Sec. 2.2.1: itesd§mamical timescalgjiven by
eq. (2.17),

3/2 1/2
| R3 R Mo

The dynamical timescale is the timescale on which a statséa@ perturbation of hydrostatic equi-
librium. We saw that this timescale is typically of the orddéthours or less, which means that stars
are extremely close to hydrostatic equilibrium.

2.5.1 The thermal timescale

The second timescale describes how fast changes in thedghsetmcture of a star can occur. It is
therefore also the timescale on which a star in thermal #giuim reacts when its TE is perturbed.
To obtain an estimate, we turn to the virial theorem: we sa®an. 2.3.1 that a star without a nuclear
energy source contracts by radiating away its internal@neontent:L = Ejy ~ —2Egr, where the
last equality applies strictly only for an ideal gas. We daustdefine théhermalor Kelvin-Helmholtz
timescaleas the timescale on which this gravitational contractiom@ccur:

(2.40)

MY RoLo
RLY
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Here we have used eq. 2.26 6§ with a ~ 1

The thermal timescale for the Sun is aboui & 107 years, which is many orders of magnitude
larger than the dynamical timescale. There is thereforeirzidobservational evidence that any star
is in thermal equilibrium, and in the late 19th century (lvefthe importance of nuclear reactions was
recognized) gravitational contraction was proposed a®itegy source of the Sun by Lord Kelvin
and, independently, by Hermann von Helmholtz. Nucleartieas have since turned out to be a
much more powerful energy source, allowing stars to be imtlaéequilibrium for most$ 99 %) of
their lifetimes. However, several phases of stellar evotytduring which the nuclear power source
is absent or ingicient, do occur on the thermal timescale.

2.5.2 The nuclear timescale

A star can remain in thermal equilibrium for as longs as itslear fuel supply lasts. The associated
timescale is called theuclear timescaleand since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), it is also the timescale on which compositibanges in the stellar interior occur.

The energy source of nuclear fusion is the direct conversiasmall fractiony of the rest mass
of the reacting nuclei into energy. For hydrogen fusigny 0.007; for fusion of helium and heavier
elementsp is smaller by a factor 10 or more. The total nuclear energyplugan therefore be written
asEnuc = dMnuc® = ¢ frueMc?, wherefcis that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriurh = Lpyc = Enue, SO We can estimate the nuclear timescale as

Tnuc = @: = ﬁbfnuc'vI ~ 1010— M LLQ (2.41)
The last approximate equality holds for hydrogen fusion sta like the Sun, with has 70 % of its
initial mass in hydrogen and fusion occurring only in theens 10 % of its mass (the latter result
comes from detailed stellar models). This long timescalissistent with the geological evidence
for the age of the Earth.

We see that, despite only a small fraction of the mass beiagasle for fusion, the nuclear
timescale is indeed two to three orders of magnitude latggn the thermal timescale. Therefore the
assumption that stars can reach a state of thermal equitibis justified. To summarize, we have
found:

Thuc => TKH > Tdyn.

As a consequence, the rates of nuclear reactions deterharpate of stellar evolution, and stars may
be assumed to be in hydrostatic and thermal equilibriumuiginout most of their lives.

Suggestion for further reading

The contents of this chapter are covered more extensivelClmgpters 1 to 4 of KkrenHAHN &
\WEIGERT.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolatenh fitwe rest of the Universe, matter and
radiation tend towards a statetbiermodynamic equilibriumThis equilibrium state is achieved when
suficient interactions take place between the material pagi€lcollisions’) and between the pho-
tons and mass patrticles (scatterings and absorptionsucma state of thermodynamic equilibrium
the radiation field becomes isotropic and the photon eneigfyilaltion is described by the Planck
function (blackbody radiation). The statistical disttiloem functions of both the mass particles and
the photons are then characterized by a single temperature

We know that stars are not isolated systems, because théyagti@tion and generate (nuclear)
energy in their interiors. Indeed, the surface temperadfithe Sun is about 6000 K, while we have
estimated from the virial theorem (Sec. 2.3) that the iotelémperature must of the order of “IK.
Therefore stars aneotin global thermodynamic equilibrium. However, it turns thét locally within
a star, a state of thermodynamic equilibritsachieved. This means that within a region much smaller
than the dimensions of a stak(R.), but larger than the average distance between interactibthe
particles (both gas particles and photons), i.e. largar tha mean free path, there is a well-defined
local temperaturaghat describes the particle statistical distributions.

We can make this plausible by considering the mean free paibhiotons:

wherex is the opacity cofficient, i.e. the ffective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cressien, which iskes = 0.4 cné/g (see
Ch. 4). The average density in the Sumpis 1.4 g/cm?, which gives a mean free path of the order
of {on ~ 1cm. In other words, stellar matter is very opacue to raoimatiThe temperature flierence
over a distancéy, i.e. between emission and absorption, can be estimated as

dT T 10
afph ~ chph ~ Toit ~ 104K

which is a tiny fraction (10'1) of the typical interior temperature of 1&. Using a similar estimate,

it can be shown that the mean free path for interactions letwenized gas particles (ions and
electrons) is several orders of magnitude smaller than Hence a small region can be defined
(a ‘point’ for all practical purposes) which is £pn but much smaller than the length scale over
which significant changes of thermodynamic quantities pbcdihis is calledlocal thermodynamic
equilibrium (LTE). We can therefore assume a well-defined temperatstahition inside the star.

AT =
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Furthermore, the average time between particle intenast{the mean free time) is much shorter
than the timescale for changes of the macroscopic properfitierefore a state of LTE is secured
at all times in the stellar interior. The assumption of ET&nstitutes a great simplification. It
enables the calculation of all thermodynamic propertiethefstellar gas in terms of the local values
of temperature, density and composition, as they change tihe centre to the surface.

3.2 The equation of state

The equation of state (EOS) describes the microscopic prepef stellar matter, for given density
p, temperaturd and compositiorX;. It is usually expressed as the relation between the pressud
these quantities:

P =P(p,T,X) (3.1)

Using the laws of thermodynamics, and a similar equatioriHferinternal energy (o, T, X;), we can
derive from the EOS the thermodynamic properties that aeele@ to describe the structure of a star,
such as the specific heatg andcp, the adiabatic exponentyand the adiabatic temperature gradient
Vad.

An example is the ideal-gas equation of state, which in tleipus chapters we have tacitly
assumed to hold for stars like the Sun:

P=nkT or P=— T,
pumy

In this chapter we will see whether this assumption wasfjadtiand how the EOS can be extended to
cover all physical conditions that may prevail inside a.stére ideal-gas law pertains to particles that
behave according to classical physics. However, both gnamiechanical and special relativistic ef-
fects may be important under the extreme physical conditinistellar interiors. In addition, photons
(which can be described as extremely relativistic parsictan be an important source of pressure.

We can define an ideal @rerfectgas as a mixture of free, non-interacting particles. Of seur
the particles in such a gas do interact, so more preciselyeggine that their interaction energies
are small compared to their kinetic energies. In that casdriternal energy of the gas is just the
sum of all kinetic energies. From statistical mechanics arderive the properties of such a perfect
gas, both in the classical limit (recovering the ideal-gas)land in the quantum-mechanical limit
(leading to electron degeneracy), and both in the nonivedat and in the relativistic limit (e.g. valid
for radiation).

In addition, variousion-idealeffects may become important. The high temperatusesf K) in
stellar interiors ensure that the gas will be fully ionizbdt at lower temperatures (in the outer layers)
partial ionization has to be considered, with importaffitets on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gdsctrostatic interactionbetween the ions and electrons
may be important under certain circumstances.

3.2.1 The perfect gas approximation

Is the perfect gas approximation reasonable in stellariorte i.e. are the interaction energies indeed
small compared to the kinetic energies?

IN.B. note the dference between (locaflermodynamic equilibriuniTgadr) = Trad(r) = T(r)) and the earlier defined,
global property othermal equilibrium(E;,; = const, orL = Lyy).
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The average distance between gas particles (with rAas$ is d ~ (%n)~Y/® wheren is the
number densityn = p/(Am,). The typical Coulomb energy per particle (with chai@ge is ec ~
Z2¢%/d, so that the ratio of Coulomb energy to average kinetic enekg = 3kT, is

e 2% 7% p'B

ain  dKT ~ (Am)Y3 kT
We see that Coulomb interactions increase in importancéghtdensities or low temperatures. To
estimate the ratiec/exn in stellar interiors we approximaje~ p = M/(%”R?’), and we approximate
T by the average temperature estimated from the virial thepfe~ T~ %AT”‘J%. Ignoring factors
of order unity, we get

2 2
c € 23 L0012 (ﬂ)
Mo

ain  (Am,)*3G A3
The ratioZ?/A*? depends on the composition, and represents an averagehevaristituents of the
gas. In stars mostly composed of hydrog&rny 1 andZ ~ 1, and we find that in the Sun the Coulomb
energy contributes of the order of 1% to the particle ensr@@end hence has a similaffect on the
pressure). We are therefore justified in ignoring Coulomierections in stars, certainly in those
similar or more massive than the Sun. However, eq. (3.3) shitwat in low-mass stars Coulomb
interactions can start to contribute significantly, ancadetl models of such stars need to take this
into account. FoM < 103 M, the Coulomb energies dominate, however, such objects arstars
but planets (Jupiter's mass is aboutd®,). Calculations of the structure of planets requires a much
more complicated equation of state than for stars.

(3.2)

-2/3
(3.3)

3.3 The equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas fraptinciples of statistical mechanics. This
provides a description of the ions, the electrons, as wet@photons in the deep stellar interior.

Let n(p) be the distribution of momenta of the gas particles,ri(@)d p represents the number of
particles per unit volume with momenfae [p... p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the intereaérgy density (internal energy per unit
volume) and the pressure can be obtained from the followitegials:

number density n:f n(p)dp (3.4)
0
internal energy density U :f epn(p)dp = n{ep) (3.5)
0
pressure P = %f pvpn(p)dp = $n(pvp) (3.6)
0

Hereg, is the kinetic energy of a particle with momentynandy,, is its velocity. Eq. (3.4) is trivial,
and eq. (3.5) follows from the perfect-gas assumption. Treequre integral eq. (3.6) requires some
explanation.

Consider a gas af particles in a cubical box with sides of lendth= 1 cm. Each particle bounces
around in the box, and the pressure on one side of the boxsdsuin the momentum imparted by
all the particles colliding with it. Consider a particle Wwimomentunmp and corresponding velocity
coming in at an anglé with the normal to the surface, as depicted in Fig. 3.1. Time thetween two
collisions with the same side is

2L 2

"~ vcosd  vcosh
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Figure 3.1. Gas particle in a cubical box with a volume of 1&nEach

)/ collision with the side of the box results in a transfer of memtum; the
pressure inside the box is the result of the collective mdomarnransfers of
L =1cm all n particles in the box.

The collisions are elastic, so the momentum transfer isstfie momentum component perpendicular
to the surface,

Ap = 2pcosé. (3.7)
The momentum transferred per particle per second and p&iscinerefore

Ap

— =vpcogH. 3.8

At - VPeos (3.8)

The number of particles in the box with € [p...p+ dp] andd € [0...0 + dd] is denoted as
n(@, p) dd dp. The contribution to the pressure from these particlesaa th

dP = vp cos 6n(g, p)do dp. (3.9)

Since the momenta are distributed isotropically over alections within a solid anglez2 and
the solid angledw subtended by those particles withe [6...6 + df] equals Z sinddd, we have
n(e, p) do = n(p) sinv dg and

dP = vpn(p) cos #singdodp. (3.10)

The total pressure is obtained by integrating over all an{fle< 6 < 7/2) and momenta. This results
in eq. (3.6) sincefé”2 cogdsingdy = fol cogfdcosh = 3.
3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are retat¢heir momenta according to special rela-
tivity:

€ = p?c® + méc?, €p=€— mc (3.11)
and
de pc&
Vp = ap- € (3.12)

We can obtain generally valid relations between the presand the internal energy of a perfect gas
in the non-relativistic (NR) limit and the extremely relastic (ER) limit:

NR limit: in this case the momenfa< mg so thate, = e - me& = $p?/mandv = p/m. Therefore
(pv) = (p?/m) = 2(ep) SO that eq. (3.6) yields

P=

wIiny

U (3.13)
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ER limit: inthis casep > mg so thate, = pcandv = c. Therefore(pv) = (pc) = (ep), and eq. (3.6)
yields

P=1U (3.14)

Wl

These relations are generally true, Bory particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chatiterchange frong to 4 in the relation
has important consequences for the virial theorem, anchtostability of stars.

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can addres®tilggn of the ideal-gas law. The mo-
mentum distributiomn(p) for classical, non-relativistic particles of massin LTE is given by the
Maxwell-Boltzmanmistribution:

n(p)dp = e P/2KT 472 dp, (3.15)

n
(2rmkT)3/2
Here the exponential factoe (®/T) represents the equilibrium distribution of kinetic eriegy the

factor 4rp? dpis the volume in momentum spacpy( Py, Pz) for p € [p... p+ dpl, and the factor
n/(2xmkT)%2 comes from the normalization of the total number densityposed by eq. (3.4). (You
can verify this by starting from the standard mtegfﬁf e¥dx = 1 5 Vr/a, and diferentiating once

with respect ta to obtain the mtegraf e %2 X.)
The pressure is calculated by usweg p/mfor the velocity in eq. (3.6):

P=

Wl

n Rl

By performing the integration (for this you need t(ﬁfd'rentiatefom e~ x2dx once more with respect
to @) you can verify that this indeed yields the ideal gas law

[P =nkT] (3.17)

(N.B. This derivation is for a gas afon-relativisticclassical particles, but it can be shown that the
same relatiorP = nkT is also valid forrelativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particlésnassm. It should be obvious that for

a mixture of free particles of fierent species, it holds for the partial pressures of eacheoton-
stituents of the gas separately. In particular, it holdsbioth the ions and the electrons, as long as
guantum-mechanicalffects can be ignored. The total gas pressure is then just theoSpartial
pressures

Pgas= Pion + Pe = 2i Pi + Pe = (i Ni + Ne)KT = nkT

wheren; is the number density of ions of eleméntvith massam, = Aim, and charge&e. Thenn; is
related to the density and the mass fractigrof this element as
Xi p

n=—— and = —— = —— 3.18
! A my flion Z A mu HMion mu ( )
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which defines the mean atomic mass perugn. The partial pressure due to all ions is then
Pion = —-—KT = —pT. (3.19)

We have used here the universal gas consRaatk/m, = 8.31447x 10’ ergg ! K~1. The number
density of electrons is given by

Ne = Zz.n. =y 2L £ (3.20)

which defines thenean molecular weight per free electrap As long as the electrons behave like
classical particles, the electron pressure is thus given by
P~ Lyt Rt (3.21)
He My HMe
When the gas is fully ionized, we have for hydrogén= A; = 1 while for helium and the most
abundant heavier elemenig/A; ~ % In terms of the hydrogen mass fracti&nwe then get

2

N —— 3.22
He 1 + X’ ( )
which for the SunX = 0.7) amounts tqe ~ 1.18, and for hydrogen-depleted gas giyess 2.
The total gas pressure is then given by
1 1 R
Pgas= Pion + Pe = (— + — ) RpT = —pT (3.23)
Mion  Me
where themean molecular weight is given by
1 1 Zi + 1)X
1_1 __Z('+)' (3.24)
M Mion HMe

i
It is left as an exercise to show that for a fully ionized gasan be expressed in terms of the mass
fractionsX, Y andZ as
1
3 1
2X + ZY + §Z

if we assume that for elements heavier than helidmy 2Z; ~ 2(Z + 1).

o~ (3.25)

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with whichrdgbels location and momentum can
be known simultaneously is limited by Heisenberg’'s undetyaprinciple, i.e.AxAp > h. In three
dimensions, this means that if a particle is located withimlame elemeniV then its localization
within three-dimensional momentum spak¥p is constrained by

AV A%p > hd, (3.26)

The quantityn® defines the volume in six-dimensional phase space of onewmarell. Thenumber
of quantum states a spatial volumé/ and with momentg € [p... p + dp] is therefore given by

Vv
F47rp2c;| P, (3.27)
wheregs is the number of intrinsic quantum states of the particlg, &pin or polarization.

The relative occupation of the available quantum statepéoticles in thermodynamic equilib-
rium depends on the type of particle:

g(p)dp = gs
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o fermions(e.g. electrons or nucleons) obey the Pauli exclusion jpiecwhich postulates that
no two such particles can occupy the same quantum state rd¢teh of states with energy,
that will be occupied at temperatufeis given by

1

fro(ep) = KT 1 1’ (3.28)

which is always< 1.

¢ bosonge.g. photons) have no restriction on the number of pagipkr quantum state, and the
fraction of states with energs, that is occupied is

1

fee(ep) = de KT 1’ (3.29)

which can be> 1.

The actual distribution of momenta for particles in LTE isegi by the product of the occupation
fraction f(ep) and the number of quantum states, given by eq. (3.27). Thatiyu appearing in
egs. (3.28) and (3.29) is the so-callgiemical potential It can be seen as a normalization constant,
determined by the total number of particles in the volumesaered (i.e., by the constraint imposed
by eq. 3.4).

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, ge.= 2. According to eq. (3.27), the maximum
number density of electrons with momentymallowed by quantum mechanics is therefore
g 8

Mmax(P) dp = =5 4rp’dp = = p“dp. (3.30)
This is shown as the dotted line in Fig. 3.2. The actual moomardistribution of electronsg(p) is
given by the product of eq. (3.30) and eq. (3.28). In the rativistic limit we havee, = p?/2me,
giving

2 1

s L 2
B S 1 drpedp, (3.31)

ne(p)dp =
where we have replaced the chemical potential bydégeneracy parameter = u/KT. The value of
Y is determined by the constraint thﬁio ne(p) dp = ne (eq. 3.4).
The limitation imposed by the Pauli exclusion principle meahat electrons can exert a higher
pressure than predicted by classical physics (eq. 3.21)luBtrate this, in Fig. 3.2 the momentum
distribution eq. (3.31) is compared to the Maxwell-Boltamalistribution for electrons, eq. (3.15),

nus(p) dp = e P/2mekT g7 024, (3.32)

Ne
(27rmekT)3/2
The situation shown is for an electron density = 6 x 107’ cm3, which corresponds to a mass
density of 2x 10* g/cm=3 (assuming a hydrogen-depleted gas with= 2). At high temperatures,
T = 2 x 10’ K, the momentum distribution (solid line) nearly coincideih the M-B distribution
(dashed line): none of the quantum states are fully occupigp) < nmax(p) for all values ofp) and
the electrons behave like classical particles. As the teatpe is decreased, e.g.t= 2 x 10°K
(red lines), the peak in the M-B distribution shifts to smealh and is higher (since the integral over
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Figure 3.2. (left panel) Electron momentum distribution§p) for an electron density afe = 6 x 10?’ cm™
(corresponding tp = 2 x 10*g/cm3 if ue = 2), and for three dierent temperatures. = 2 x 10’ K (black
lines), 2<10°K (red lines) and 210° K (blue lines). The actual distributions, governed by quamimechanics,
are shown as solid lines while the Maxwell-Boltzmann digttions for the sama. andT values are shown
as dashed lines. The dotted lingay is the maximum possible number distribution if all quantuates with
momentump are occupied. (right panel) Distributions in the liflit= 0, when all lowest available momenta
are fully occupied. The blue line is for the same density aténleft panel, while the red line is for a density
two times as high.

the distribution must equatls). The number of electrons with small valuesméxpected from clas-
sical physicsnus(p), then exceeds the maximum allowed by the Pauli exclusiowipte, nmax(p).
These electrons are forced to assume quantum states witérlugthe peak in the distributiong(p)
occurs at highep. Due to the higher momenta and velocities of these electithieselectron gas
exerts a higher pressure than inferred from classical physthis is calledlegeneracy pressurdf
the temperature is decreased even more, e.§. at2 x 10°K (blue lines), the lowest momentum
states become nearly all filled ang{p) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decrease othardly changes the momentum distribution, so that the relect
pressure becomes neanhdependent of temperature

Complete electron degeneracy

In the limit thatT — 0, all available momentum states are occupied up to a maxivaine, while
all higher states are empty, as illustrated in the right pah&ig. 3.2. This is known asomplete
degeneracyand the maximum momentum is called #emi momentumg Then we have

8rp?

Ne(p) = "R for p < pr, (3.33)

ne(p) = 0 for p > pr. (3.34)

The Fermi momentum is determined by the electron densitutit eq. (3.4), i.efoIOF Ne(p)dp = Ne,

which yields
3 1/3
PE = h(s—ﬂne) . (3.35)
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The pressure of a completely degenerate electron gas is asyvte compute using the pressure
integral eq. (3.6). It depends on whether the electronseativistic or not. In thenon-relativistic

limit we havev = p/mand hence

PE 8rpt 87 h? 3,2/3
p.=1 " dp= 5= = 573, 3.36
e= 3 Pme p 15, Pr 20me(7r) Ne ( )
Using eq. (3.20) fone this can be written as
5/3
Pe = KNR(ﬁ) (3.37)
He

whereKng = %(3/702/3%5/3 = 1.00 x 10*3 [cgs units]. As more electrons are squeezed into the
same volume, they have to occupy states with larger momastalustrated in Fig. 3.2. Therefore
the electron pressure increases with density, as expréyseqgl (3.37).

If the electron density is increased further, at some pdiatvelocity of the most energetic elec-
trons, pe/me, approaches the speed of light. We then have to replagep/m by the relativistic
kinematics relation (3.12). In thextremely relativistidimit when the majority of electrons move at
relativistic speeds, we can take- c and

PF 8rcp? 8rc , hc/3\13 44
Pe:%f 0= e b= g e (3.38)
which gives
4/3
Pe = Keg (2
e = Ker| — (3.39)
He

with Ker = 26(3/7)Y3m;*® = 1.24 x 105 [cgs units]. In the ER limit the pressure still increases
with density, but with a smaller exponer@ {(nstead ofg). The transition between the NR regime,
eg. (3.37), and the ER regime, eq. (3.39), is smooth and cargressed as a function & pg/mec,
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see K&W Chapter 15. Roughly, the transition occurs at a depgigiven by the conditiorpg ~ mec,
which can be expressed as
8 (meC 3

oo~ ey () (3.40)

3\ h
The relation betweeR. andp for a completely degenerate electron gas is shown in Fig. 3.3

Partial degeneracy

Although the situation of complete degeneracy is only asdeatT = 0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when thedeatype is sfiiciently low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degmyeparametey > 0 in eq. (3.31). In
that case egs. (3.37) and (3.39) can still be used to cadctilatpressure to good approximation.

The transition between the classical ideal gas situatiahaastate of strong degeneracy occurs
smoothly, and is known gzartial degeneracyTo calculate the pressure the full expression eq. (3.31)
has to be used in the pressure integral, which becomes i@hgslicated. The integral then depends
ony, and can be expressed as one of the so-c&éethi-Dirac integrals, see K&W Chapter 15 for
details (the other Fermi-Dirac integral relates to the nmi energy densityJ). The situation of
partial degeneracy correspondsjte- 0.

Whenys < 0 the classical description is recovered, i.e. eq. (3.3¢9ives the Maxwell-Boltzmann
distribution. In that case/{e(P*/2mekD-v 4 1) = g (P*/2mekD+v and therefore

2 o Ne . h3ne
h3 (2rmgkT)3/2 2(2nmegkT)3/2°
This only holds fory < 0, but more generally it can be shown that= y(ne/T%3). We have to
consider (partial) degeneracyif= 0, i.e. if
2(2rmekT)3/2
Ne 2 —
The limit of strong (almost complete) degeneracy is reackleeinn is roughly a factor 10 higher.

or y=1

(3.41)

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become $othig the electrons become degenerate
and exert a (much) higher pressure than they would if theyaweth classically. Since in the limit of
strong degeneracy the pressure no longer depends on thertome, this degeneracy pressure can
hold the star up against gravity, regardless of the temperafTherefore a degenerate star does not
have to be hot to be in hydrostatic equilibrium, and it canagmn this state forever even when it
cools down. This is the situation imhite dwarfs

The importance of relativity is that, when a degeneratelsaomes more compact and the density
increases further, the pressure increases less steeplydesisity. This has important consequences
for massive white dwarfs, and we shall see that it implies there is a maximum mass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very)riaumtdan stars, degeneracy of tlums
is not. Since the ions have mas&e2000 larger than electrons, their momenpa=( v2me) are much
larger at energy equipartition, and the condition (3.419v&b(with me replaced bymign) implies
that much higher densities are required at a particular ézatpre. In practice this never occurs:
before such densities are reached the protons in the atamsieirwill capture free electrons, and
the composition becomes one of (mostly) neutrons. Degey@fneutronsdoes become important
when we consider neutron stars.
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3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particlesaitg momentum and therefore exert
pressure when they interact with matter. In particular phetardbosonswith gs = 2 (two polarization
states), so they can be described by the Bose-Einsteistgtsitieq. (3.29). The number of photons is
not conserved, they can be destroyed and created until tlidgmamic equilibrium is achieved. This
means that: = 0 in eq. (3.29) and hence

2
n(p)dp = = 1 4rp?dp (3.42)

efp/kT —

Photons are completely relativistic wigg = pc = hv, so in terms of frequency their distribution in
LTE becomes th@lanck functiorfor blackbody radiation:

vady
ehv/kT -1

Applying egs. (3.4) and (3.5) one can show that the photonbeurdensity and the energy density of
radiation are

n(v)dv = %T (3.43)

Noh = f n(p)dp=bT3 (3.44)
0
Urad = fo per(p)dp=aT* (3.45)
whereb = 20.3 cn3 K3 anda is the radiation constant
5
a= % =756x 10 P ergcnm3K 4.

Since photons are always extremely relativisBcs U by eq. (3.14) and theadiation pressurds
given by

Prag = 3aT* (3.46)

Pressure of a mixture of gas and radiation
The pressure inside a star is the sum of the gas pressure diatica pressure,
P = Prag + Pgas= Prad + Pion + Pe.

whereP,4qis given by eq. (3.46) anBio, by eq. (3.19). In generd, must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3,24nd in the limits of non-relativistic and
extremely relativistic degeneracy by egs. (3.37) and (3.B8pectively. If the electrons are non-
degenerate then the pressure can be written as

R
P=21aT*+ —pT.
M
If the electrons are strongly degenerate their pressurdrdiias over that of the (classical) ions, so in

that cas&Pjn, can be neglected in the total pressure.
The fraction of the pressure contributed by the gas is custibyrexpressed g8, i.e.

Pgas=pP and Praa=(1-8)P. (3.47)
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3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dontieagg|iation of state atféiérent
temperatures and densities. In Fig. 3.4 the boundariessegitihese regimes are plotted schematically
in the logT, logp plane.

e The boundary between regions where radiation and ideapgessure dominate is defined by
Prad = Pgas 9iving T/p/3 = 3.2 x 10'u~Y/® whenT andp are expressed in cgs units. (Verify
this by comparing egs. 3.23 and 3.46.) This is a line withes%)in the logT vs logp plane.

e Similarly, the boundary between the regions dominated bglidas pressure and non-relativistic
degenerate electron pressure can be defineylyteal = Penr as given by eq. (3.37), giving
T/p?® = 1.21x 10°%u 415> (again withT andp in cgs units). This is a line with slopgin the
log T-logp plane.

e The approximate boundary between non-relativistic andtixéstic degeneracy is given by
eq. (3.40)p = 9.7 x 1Pue g/cm?®.

¢ At high densities the boundary between ideal gas pressdrexremely relativistic degeneracy
is found by equating egs. (3.23) and (3.39), givig/® = 1.50x 107 ug ¥ (with T andp in
Cgs units), again a line with slop%

As shown in Fig. 3.4, detailed models of zero-age (that ispdgeneous) main-sequence stars with
masses between 0.1 and 1@ cover the region where ideal-gas pressure dominates tregiequ
of state. This justifies the assumptions made in Ch. 2 whesusksng the virial theorem and its
consequences for stars, and when estimating temperatuties $tellar interior.
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Figure 3.4. The equation of state for a gas of free particles in theTlptpgp plane. The dashed lines are
approximate boundaries between regions where radiatiesspre, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeataminate, for a compositiok = 0.7 andZ = 0.02.

In the right panel, detailed structure models for homogesanain-sequence stars ol0.100M,, have been
added (solid lines). The ¥, model is well within the ideal-gas region of the equationtates. In the 0.M,,

star electron degeneracy pressure is important, excejpeiauter layers (at low andT). In stars more massive
than 10M, radiation pressure becomes important, and it dominatéeisurface layers of the 10, model.
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3.4 Adiabatic processes

It is often important to consider processes that occur oh aughort (e.g. hydrodynamical) timescale
that there is no heat exchange with the environment; suctepses aradiabatic To derive the
properties of stellar interiors under adiabatic condsiave need several thermodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst law of thermodynamics (see Sec. 2.4) states that the amounabéhsorbed by a system
is the sum of the change in its internal energy and the worledonthe system. Theecond lawof
thermodynamics states that, for a reversible process,ithege in entropy equals the change in the
heat content divided by the temperature. Entropy is a stat@ble, unlike the heat content. For a
unit mass (1 gram) of matter the combination of these lawseagxpressed as

dg=Tds=du+ Pdv:du—Ezdp. (3.48)
P

Heredq is the change in heat contemt, is the change in internal energy € U/p is the specific
internal energy, i.e. per gramg,is the specific entropy (i.e. the entropy per unit mass)waadl/p is
the volume of a unit mass. Note thdii anddsare exact dierentials, whereadq is not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabati@tiees it is useful to write the equation of
state in dfferential form, i.e.

P dT  do

whereyT andy, are defined as
dlogP T (0P
- - = 3.50
AT (6IogT)p’xi P(aT)p’xi’ (3.50)
dlog P) o (6P)
v, = Py (3.51)
g (6Iogp Tx P\dp/ryx

The subscripX; means that the composition is held constant as well. In argkagquation of state
xT andy, can depend ol andp themselves, but if they are (approximately) constant thercan
write the equation of state in power-law form:

P = Pt TAT.
For example, for an ideal gas without radiation we haye= y,, = 1, while for a radiation-dominated
gasyt = 4 andy, = 0.
3.4.1 Specific heats

The specific heats at constant volumeand at constant pressucg for a unit mass of gas follow
from eq. (3.48):

_(da) _(du

(&)~ (7); 952
_(d99) _(ou) _P(dp

CP‘(E)P‘(aT)P pZ(aT)P’ (3.53)
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where a partial derivative taken at constaiig the same as one taken at consgarfeor an ideal gas,
withu = U/p = %P/p, we obtain from eq. (3.23) the familiar resul} = %R/,u. For a radiation-
dominated gas, eq. (3.45) yields = 4aT3/p. Using thermodynamic transformations and some
algebraic manipulation (see Appendix), it follows quitengrally that the specific heats are related by

2
Cp—Cy = ——. (3.54)

eT xp

For an ideal gas this amountsdp — cy = R/u, and thereforep = gR/u. For a radiation-dominated

gasy, = 0 and hencep — co: indeed, sincé g Only depends oif, a change in temperature cannot

be performed at constant pressure.

The ratio of specific heats is often denotedyas
P xr?

P 1y (3.55)

y_CV pToy Xp,

so thaty = 2 for an ideal gas.

3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic chagesasured by the so-callediabatic
derivatives Two of these have special importance for stellar structure

¢ Theadiabatic exponeRty,q measures the response of the pressure to adiabatic compress
expansion, i.e. to a change in the density. It is defined as

dlog P) (3.56)
ad

?’ad:(alogp

where the subscript 'ad’ means that the change is perforrdidatically, that is, at constant
entropy. Ifyaq is constant therP « p”=d for adiabatic changes. As we shall see lajgg is
related to thelynamical stabilityof stars.

e Theadiabatic temperature gradiens defined as

ologT
Vad = (BlogP)ad (3.57)

It is in fact another exponent that describes the behavibtineotemperature under adiabatic
compression or expansiof (o« PV if V4 is constant), which turns out to be important for
stability againstonvection

2In many textbooks one finds instead the adiabatic exporf@nts,, andI'; introduced by Chandrasekhar. They are
defined, and related tgy andV,q, as follows:

P
Vad

_(0IogP)ad_ I :(alogP)ad: 1 F3:(alogT)ad+1

1=\ Glogp Jas 7@ I,-1 \dlogT dlogp
They obey the relation

B I
[3-1 T,-1

32



The adiabatic exponent For an adiabatic procesk) = 0 in eg. (3.48) and therefore

du= 32 dp. (3.58)
P

We have seen in Sect. 3.3.1 that for a perfect gas of freecfgmtthe internal energy density is
proportional toP, in both the NR and ER limits. For such a simple system we caretbre write, as
we did in Sect. 2.3,
P
u=¢— (3.59)
P

with ¢ a constant (betweegl and 3). If we diferentiate this and substitute into eq. (3.58) we obtain
for an adiabatic change

dP ¢ +1do
—_ = (3.60)
P ¢ p
Therefore, according to the definition ufy (eq. 3.56),
Yad = % (for a simple, perfect gas) (3.61)

o for non-relativistic particles (e.g. a classical ideal gas, NR degenerate etejip = % and
thereforeyaq = 2

o for extremely relativistigarticles (e.g. photons, ER degenerate electrgns)3 and therefore
Yad = %

o for a mixture of gas and radiation @ 8 < 1) andor moderately relativistic degenerate elec-
trons, 2 < yaq < 3

For a general equation of state, described by eq. (3.49)camelerive (see Appendix)
P 2
=Xp+ ——XT . 3.62

Yad = Xp oToy XT ( )

Thereforey,qis related to the ratio of specific heats (eq. 3.58),= v x,. They’s are equal ify, = 1
(as in the case of an ideal gas).

The adiabatic temperature gradient By writing eq. (3.56) agIP/P = y,qdp/p for an adiabatic
change, and eliminatingo with the help of eq. (3.49), we obtain a general relation leetwthe
adiabatic temperature gradieWifq and the adiabatic exponepty:

Yad — Xp

Vad = (3.63)

This gives the following limiting cases:

« for an ideal gas without radiatiofs (= 1) we haveyt = x, = 1, which together withyaq = %
givesVaq = £ = 04.

o for a radiation-dominated gag € 0) yt = 4 andy, = 0 so thatVq = %1 = 0.25.
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For a general equation of state one has to consider the demgreession fory,g (€q. 3.62) in
eg. (3.63). One can also derive the following relationVgg (see Appendix):

P xr
Vag= —— —. 3.64
? PTCr xp ( )
We give some important results without derivations, whiah be found in K&W Chapters 13.2 and
16.3 or in Hinsen Chapter 3.7:

o for a mixture of gas and radiation with© 8 < 1, V44 andyaq both depend o and take on
intermediate values, i.e.Zb < V44 < 0.4.

o for a non-relativistic degenerate gas, we have to conskdgraithough electrons dominate the
pressure, there is a (tiny) temperature dependence due torttgas which must be taken into
account in calculatingt and thereforév,q. After some manipulation it can be shown that in
this casevVyq = 0.4, as for the ideal classical gas.

o for an extremely relativistic degenerate gas one also hagsrtsider that while the electrons are
relativistic, the ions are still non-relativistic. It tsrout that in this limitVag = 0.5.

3.5 lonization

We have so far implicitly assumed complete ionization ofdhs, i.e. that it consists of bare atomic
nuclei and free electrons. This is a good approximation instellar interiors, wherd > 10° K
so that typical energiekT are much larger than the energy needed to ionize an atonto ik|wock
off a bound electron. In the cooler outer layers of a star, howeve need to consider theartial
ionizationof the elements. In this case quasi-static changes of ttesidaables 4 andT) will lead
to changes in the degree of ionization. This can have a ldfgeten the thermodynamic properties
of the gas, e.g. ofigg andVg.

In LTE the number densities of ionized and neutral specieslatermined by th8aha equation

nr+1n Uy 2(2rmekT)¥/2
noc U h3
wheren; andn,,; indicate the number densitiesoindr + 1 times ionized nuclejy is the ionization
potential, i.e. the energy required to remove tith bound electron, and andu,, 1 are the partition
functions. The partition functions dependBibut can in most cases be approximated by the statistical
weights of the ground states of the bound species. (Thistiequean be derived from statistical
mechanics, e.g. see K&W Chapter 14.1.)

g /KT (3.65)

3.5.1 lonization of hydrogen

As an example, we consider the simple case where the gasstoosily of hydrogen. Then there
are just three types of particle, electrons and neutral anked hydrogen, withuy = Uy = 2 and
UH+ = Uz = 1. We write their number densities as andng so that

U i
No h3
whereyy = 13.6eV. The gas pressure is given Byas = (o + Ny + nNg) KT and the density is
p = (no + ny) my. Thedegree of ionizations defined as
x=
nO + n+

(3.66)

(3.67)
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Figure 3.5. The adiabatic temperature gradienhfy plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hydmgas, for three values of the density 14,0
107 and 108 g/cm?®). When hydrogen is partially ionize®,q is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of iordrati= 0.5, close to the minimum oV,4. As the
density increases, a higher temperature is needed to readaime ionization degree. The right panel shows
how V4 varies with temperature in a detailed stellar model 844, between the surface (at~ 6000K) and
the centre (al ~ 1.5 x 10’ K). Apart from the hydrogen ionization zone around k() a second depression
of V.q around 106K is seen which is due to the firéHe ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar terapees and densities. Note that the region where
T < 10°K comprises only the outer 1% of the mass of the Sun. (The diditie shows howV,q would vary
with T in this model if the composition were pure hydrogen, as wasrmagd in the left panel.)

so thatPgascan be written in terms of the degree of ionization
We can then rewrite Saha’s equation as

2 3/2 5/2
X _ (2nme)*/2 (KT)* e XH/KT
1 - X2 h3 Pgas

We see that the degree of ionization increases Wijths expected since more atoms are broken up by
the energetic photons. Howeveardecreases with gas pressure (or density) whes kept constant,
because this increases the probability of recombinatioitiwis proportional tae.. From eq. (3.68)
we see that the mean molecular weight 1/(1 + X) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate theféect on the thermodynamic properties of the gas, we notentibeicase of par-
tial ionization the internal energy has a contribution frtiva available potential energy of recombina-
tion. Per unit volume this contribution is equaltoyy, SO per unit mass it equals yn/o = Xyn/My.
Thus

(3.69)

3 Pgas

u= - —
2 p

A small increase in temperature increases the degree @ataon, which results in a large amount of
energy being absorbed by the gas. In other wordssfieeific heabf a partially ionized gas will be

XH 3 XH
X— =35(1+ X)RT + Xx—. 3.70
=30+ - (3.70)
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much larger than for an unionized gas, or for a completelyzexhgas (in the latter case= 1 so that
the second term in eq. (3.70) becomes a constant and thergfdevant).

Now consider what happens if the gas is adiabatically cossae: Starting from neutral hydro-
gen, for whichV,q = 0.4, the temperature initially increasess< P%4. Further compression (work
done on the gas) increasesbut when partial ionization sets in most of this energy goasraising
the degree of ionization (second term of eq. 3.70) and ottlg linto raising the temperature (first
term). In other wordsT increases less strongly with with, and thereforév,g < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that undaécé&ygonditionsV,q reaches a minimum
value of~ 0.1 whenx ~ 0.5. As the gas becomes almost fully ioniz8t rises back to 0.4. The
variation of V4 with temperature for a pure hydrogen gas is shown in the kfiepof Fig. 3.5 for
different values of the density.

The decrease 0744 in partial ionization zones can inducenvectionn the outer layers of stars,
as we shall see in Ch. 4. Similarly it can be shown thatdecreases in partial ionization zones, from
g toyag & 1.2 whenx =~ 0.5. This has consequences for the stability of stars, as weatba see.

3.5.2 lonization of a mixture of gases

In a mixture of gases the situation becomes more complidaeduse many, partly ionized species
have to be considered, the densities of which all depend cm ether (see e.g. K&W Chapter 14.4-
14.5). However the basic physics remains the same as coedidbove for the simple case of pure
hydrogen. The#ect on the thermodynamic properties is that g can show additional deviations
below 0.4 at dierent temperatures, especially where helium (the secarst-abundant element in
stars) is partially ionized. This is illustrated in Fig. B.Svhich shows the variation d¥yq with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As p increases indefinitely, the Saha equation gives 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becanuesrect when the average distance
between ions becomes less than an atomic radius. In thiisituthe ionization energy is suppressed
(there are fewer bound excited states; see Fig. 3.5.3) atisih known apressure ionization

Consider the case of hydrogen: the volume per H atonjing $o that(d) = (4—3”nH)‘1/3. Pressure
ionization sets in whetd) < ag = 5x 107° cm (the Bohr radius). This implies

nHZ 4

Fao®

orp = numy = 3gcenT3. Other elements are pressure-ionized at similar valueseoiensity, within
an order of magnitude. At densitigs10 g cnt3, therefore, we can again assume complete ionization.

______________________________ Figure 3.6. Schematic depiction of

the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from KipPENHANHN & W EIGERT.
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s : Figure 3.7. The equation of state in the
P p, T plane for a pure hydrogen gas. The
et ; dotted lines are the borders, also shown
S , >, in Fig. 3.4, between regions where ra-
8 o - (0 - diation, ideal gas and degenerate elec-
' ’ ’ trons dominate the pressure. The solid
, line shows where the ionization fraction
L of hydrogen is 0.5 according to the Saha
i ; equation, and where hydrogen becomes
6 — <C}/,/ ] pressure-ionized at high density. The
' ~7 dashed lines show where the Coulomb
\ \\.\\& interaction parametdic equals 1, above
R 7] which Coulomb interactions become im-
‘ 8 portant, and wherdc = 170, above
_| which the ions form a crystralline lat-
tice. Above the dash-dotted line'es
pairs play an important role in stellar in-
teriors.
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Fig. 3.7 shows the approximate boundary in the density-&atpre diagram between neutral and
ionized hydrogen according the Saha equatiomferl g cnt3, and as a result of pressure ionization
at higher densities.

3.6 Other dfects on the equation of state

3.6.1 Coulomb interactions and crystallization

In Sect. 3.2.1 we showed that Coulomb interactions norntedlye very small energies compared to
the kinetic energies of the ions and electrons. The ratiocafi@nb energy to kinetic energy is usually
called the Coulomb parametEg, defined as in eq. (3.2):

1/3

2 1/3
_2275% 16 2~

AR T

I'c (3.71)

_ Z%e? _ Z2%€? [ 4Anp
~ dkT KT \3Am,

where in the last equality the numerical factor is in cgssinffoulomb interactions start to become
important in stellar interiors whefic 2 1. In Fig. 3.7 the location of the conditiofic = 1 is
indicated in thep-T diagram. Comparing with Fig. 3.4 shows that tifeet of Coulomb interactions
is significant in very low-mass stars.

If Tc > 1 the thermal motions of the ions are overwhelmed by the Gohlinteractions. In
this situation the ions will tend to settle down into a comgévate with a lower energy, in other
words they will form a crystalline lattice. Detailed estites indicate that this transition takes place
at a critical value offc ~ 170. This condition is also indicated in Fig. 3.4 for a puraiogen
gas. In reality, this situation will never occur in hydrogech stellar interiors, but it can take place
in cooling white dwarfs (in which the temperature gradualcreases with time while the density
remains constant). White dwarfs are usually composed tbceand oxygen, so in this case we have
to take into account the composition which raises the teaipes at which the transition occurs (the
‘melting’ temperature) by a fact@?/AY3 according to eq. (3.71).
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Finally we note that crystallization only occurs in the @giwhere the electrons are strongly
degenerate. You may verify that the Coulomb interactiorrggnbetween electrons and ioraef/d)
is always smaller than the typical electron energ&/eme). The electrons therefore behave like a
free degenerate gas, even if the ions form a crystallinetsire.

3.6.2 Pair production

A very different process can take place at very high temperatures &tively low densities. A
photon may turn into an electron-positron pair if its enengexceeds the rest-mass energy of the pair,
hv > 2mec?. This must take place during the interaction with a nuclsirs;e otherwise momentum
and energy cannot both be conserved. Pair production td&es at a typical temperatukd ~ hy ~
2mec?, or T ~ 1.2x 101°K. However, even af ~ 10° K the number of energetic photons in the tail of
the Planck distribution (eq. 3.43) is large enough to predautarge number of'e™ pairs. The newly
created positrons tend to be annihilated quickly by thersweeaction (e+ e — v), as a result of
which the number of positrons reaches equilibrium. At a femes 18 K, depending on the electron
density, the number of positrons is a significant fractiothef number of electrons.

Pair production is similar to an ionization process: anéase in temperature leads to an increase
in the number of particles at the expense of the photon erargy pressure). Therefore pair produc-
tion gives rise to a decrease of the adiabatic gradigyand ofV g, similar to partial ionization. This
is the main importance of pair production for stellar evlat it affects the stability of very massive
stars in advanced stages of evolution (when their temperabay reach values in excess of K)
and can trigger their collapse.

Suggestion for further reading

The contents of this chapter are also covered by Chapters 18 of KippEnHAHN & W EIGERT. HOW-
ever, a more elegant derivation of the equation of stateghvisialso more consistent with the way it is
derived in these lecture notes, is given in Chapter 3 ofdel, KawaLer & TriveLE (Stellar Interiors
Springer-Verlag, 2004). Explicit expressions for manytd tesults that are only mentioned here can
be found in this book.
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