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Preface

These lecture notes are intended for an advanced astrophysics course on Stellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goal isto provide an overview of the physics
of stellar interiors and its application to the theory of stellar structure and evolution, at a level appro-
priate for a third-year Bachelor student or beginning Master student in astronomy. To a large extent
these notes draw on the classical textbook by Kippenhahn & Weigert (1990; see below), but leaving
out unnecessary detail while incorporating recent astrophysical insights and up-to-date results. At
the same time I have aimed to concentrate on physical insightrather than rigorous derivations, and
to present the material in a logical order, following in partthe very lucid but somewhat more basic
textbook by Prialnik (2000). Finally, I have borrowed some ideas from the textbooks by Hansen,
Kawaler & Trimble (2004) and Salaris & Cassissi (2005).

These lecture notes are evolving and I try to keep them up to date. If you find any errors or incon-
sistencies, I would be grateful if you could notify me by email (O.R.Pols@uu.nl).

Onno Pols
Utrecht, August 2008

Literature

• R. Kippenhahn & A. Weigert,Stellar Structure and Evolution, 1990, Springer-Verlag, ISBN
3-540-50211-4 (K; K&W)

Some sections of this book are still used in the lectures, as indicated where appropriate in these
notes.

• D. Prialnik,An Introduction to the Theory of Stellar Structure and Evolution, 2000, Cambridge
University Press, ISBN 0-521-65937-X (P)

• C.J. Hansen, S.D. Kawaler & V. Trimble,Stellar Interiors, 2004, Springer-Verlag, ISBN 0-387-
20089-4 (H)

• M. Salaris & S. Cassisi,Evolution of Stars and Stellar Populations, 2005, John Wiley & Sons,
ISBN 0-470-09220-3 (S)

iii



Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.674 3× 10−8 cm3 g−1 s−2

speed of light in vacuum c 2.997 924 58× 1010 cm s−1

Planck constant h 6.626 069× 10−27 erg s
radiation density constant a 7.565 78× 10−15 erg cm−3 K−4

Stefan-Boltzmann constantσ = 1
4ac 5.670 40× 10−5 erg cm−2 s−1 K−4

Boltzmann constant k 1.380 650× 10−16 erg K−1

electron volt eV 1.602 176 5× 10−12 erg
electron charge e 4.803 26× 10−10 esu

e2 1.440 00× 10−7 eV cm
electron mass me 9.109 382× 10−28 g
atomic mass unit mu 1.660 538 8× 10−24 g
proton mass mp 1.672 621 6× 10−24 g
neutron mass mn 1.674 927 2× 10−24 g
α-particle mass mα 6.644 656 2× 10−24 g

Table 2. Astronomical constants, mostly from the Astronomical Almanac (2008).

Solar mass M⊙ 1.988 4× 1033 g
GM⊙ 1.327 124 42× 1026 cm3 s−2

Solar radius R⊙ 6.957× 1010 cm
Solar luminosity L⊙ 3.842× 1033 erg s−1

year yr 3.155 76× 107 s
astronomical unit AU 1.495 978 71× 1013 cm
parsec pc 3.085 678× 1018 cm
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Chapter 1

Introduction

This introductory chapter sets the stage for the course, andbriefly repeats some concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-year courseIntroduction to stellar structure and
evolutionby F. Verbunt).

1.1 Introduction

Thegoal of this course on stellar evolution can be formulated as follows:

to understand the structure and evolution of stars, and their observational properties,
using known laws of physics

This involves applying and combining ‘familiar’ physics from many different areas (e.g. thermodyam-
ics, nuclear physics) under extreme circumstances (highT, high ρ), which is part of what makes
studying stellar evolution so fascinating.

What exactly do we mean by a ‘star’? A useful definition for thepurpose of this course is as follows:
a star is an object that

• radiates energy from an internal source

• is bound by its own gravity

This definition excludes objects like planets and comets, because they do not comply with the first
criterion. In the strictest sense it also excludes brown dwarfs, which are not hot enough for nuclear
fusion, although we will briefly discuss these objects. (Thesecond criterion excludes trivial objects
that radiate, e.g. glowing coals).

An important implication of this definition is that stars must evolve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain amount of time on its internal energy supply, and
eventually dies when this supply is exhausted. As we shall see, a second implication of the definition
is that stars can have only a limited range of masses, between∼0.1 and∼100 times the mass of the
Sun. Thelife and deathof stars forms the subject matter of this course. We will onlybriefly touch on
the topic ofstar formation, a complex and much less understood process in which the problems to be
solved are mostly very different than in the study of stellar evolution.
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1.2 Observational constraints

What do we know from observations?

• photometric measurements yield the apparent brightness ofa star, i.e. the energy flux re-
ceived on Earth, in different wavelength bands. These are usually expressed as magnitudes,
e.g. B, V, I , etc. Applying a bolometric correction yields the apparentbolometric flux, fbol (in
erg s−1 cm−2).

• in some cases, the distanced is known, e.g. from the parallax. The Hipparcos satellite has
measured parallaxes with 1 milliarcsec accuracy of more than 105 stars. Theluminosity Lof
the star (often expressed inL⊙ = 3.85× 1033 erg/s) then follows fromL = 4π d2 fbol.

• from spectroscopy, either the overall shape of the spectrumor by detailed spectral-line anal-
ysis, theeffective temperature Teff can be measured. This is defined as the temperature of a
blackbody with the same energy flux at the surface of the star,and is a good measure for the
temperature of the photosphere. The photometric colours also give a (less accurate) estimate of
Teff . From the definition of effective temperature it follows that

L = 4πR2σT4
eff (1.1)

whereR is the radius of the star (often expressed inR⊙ = 6.96× 1010 cm). Hence ifL andTeff

are measured, the stellar radius can be inferred.

• detailed spectral-line analysis of the measured spectrum can yield the surfacechemical com-
positionof the star. Stellar compositions are usually expressed in terms of mass fractionsXi,
wherei denotes a certain element. This is often simplified to specifying the mass fractionsX
(of hydrogen),Y (of helium) andZ (of all heavier elements or ‘metals’), which add up to 1.

• for relatively nearby stars, interferometry can yield direct information about stellar radii.

• for direct information about stellarmassesone needs binary stars with measured radial velocity
variations (spectroscopic binaries). In particular for socalled double-lined eclipsing binaries, in
which the spectral lines of both stars are seen and that furthermore show eclipses, it is possible
to accurately measure (with 1–2 % accuracy is some cases):

– masses from fitting the radial-velocity curve

– radii from fitting the eclipse lightcurve

Together with a photometric or, better, spectroscopic determination ofTeff also the luminosity
of such binaries can be measured with high accuracy, independent of the distance.

All observed properties are surface properties. Thereforewe need atheory of stellar structureto
derive the internal properties of a star. However, some direct windows on the inside of a star exist:

• neutrinos, which escape from the interior without interaction. So far, the Sun is the only (non-
exploding) star from which neutrinos have been detected.

• oscillations, i.e. stellar seismology. Many stars oscillate, and their frequency spectrum contains
information about the speed of sound waves inside the star, and therefore about the interior
density and temperature profiles. This technique has provided accurate constraints on detailed
structure models for the Sun, and is now also being applied toother stars.
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In addition, the timespan of any observations is much smaller than a stellar lifetime: observations
are like snapshots in the life of a star. The observed properties of an individual star contain no
(direct) information about its evolution. The diversity ofstellar properties (radii, luminosities, surface
abundances) does, however, depend on how stars evolve, as well as on intrinsic properties (mass,
initial composition). Properties that are common to a largenumber of stars must correspond to long-
lived evolution phases, and vice versa. By studying samplesof stars statistically we can infer the
(relative) lifetimes of certain phases, which provides another important constraint on the theory of
stellar evolution.

Furthermore, observations of samples of stars reveal certain correlations between stellar properties
that the theory of stellar evolution must explain. Most important are relations between luminosity and
effective temperature, as revealed by theHertzsprung-Russell diagram, and relations between mass,
luminosity and radius.

1.2.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important toolto test the theory of stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of stars in the vicinity of the Sun, for which the
Hipparcos satellite has measured accurate distances. Thisis an example of avolume-limitedsample
of stars. In this observers’ HRD, the absolute visual magnitude MV is used as a measure of the
luminosity and a colour index (B − V or V − I ) as a measure for the effective temperature. It is left
as an exercise to identify various types of stars and evolution phases in this HRD, such as the main
sequence, red giants, the horizontal branch, white dwarfs,etc.

Star clusters provide an even cleaner test of stellar evolution. The stars in a cluster formed within
a short period of time (a few Myr) out of the same molecular cloud and therefore share the same age

Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcos, stars with d measured to< 10 %
accuracy.
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45 (thePleiades, left panel), and a globular
cluster, M3 (right panel).

and (initial) chemical composition. Therefore, only the mass varies from star to star. A few examples
of cluster CMDs are given in Fig. 1.2, for a young open cluster(the Pleiades) and an old globular
cluster (M3). As the cluster age increases, the most luminous main-sequence stars disappear and a
prominent red giant branch and horizontal branch appear. Toexplain the morphology of cluster HRDs
at different ages is one of the goals of studying stellar evolution.

1.2.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminosities (i.e. binary stars) we can plot these quantities
against each other. This is done in Fig. 1.3 for the components of double-lined eclipsing binaries for
which M, R andL are all measured with∼< 2 % accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is verytight. Most of the stars in Fig. 1.3 are
long-lived main-sequence stars; the spread in radii for masses between 1 and 2M⊙ results from the
fact that several more evolved stars in this mass range also satisfy the 2 % accuracy criterion. The
observed relations can be approximated reasonably well by power laws:

L ∝ M3.8 and R∝ M0.7. (1.2)

Again, the theory of stellar evolution must explain the existence and slopes of these relations.

1.3 Stellar populations

Stars in the Galaxy are divided into different populations:

• Population I: stars in the galactic disk, in spiral arms and in (relatively young) open clusters.
These stars have ages∼< 109 yr and are relatively metal-rich (Z ∼ 0.5− 1Z⊙)

• Population II: stars in the galactic halo and in globular clusters, with ages∼ 1010 yr. These stars
are observed to be metal-poor (Z ∼ 0.01− 0.1Z⊙).
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relationsfor components of double-lined eclipsing
binaries with accurately measuredM, RandL.

An intermediate population (with intermediate ages and metallicities) is also seen in the disk of the
Galaxy. Together they provide evidence for thechemical evolutionof the Galaxy: the abundance
of heavy elements (Z) apparently increases with time. This is the result of chemical enrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis of a‘Population III’ consisting of the
first generation of stars formed after the Big Bang, containing only hydrogen and helium and no
heavier elements (‘metal-free’,Z = 0). No metal-free stars have ever been observed, probably due to
the fact that they were massive and had short lifetimes and quickly enriched the Universe with metals.
However, a quest for finding their remnants has turned up manyvery metal-poor stars in the halo,
with the current record-holder having an iron abundanceXFe = 4× 10−6 solar.

1.4 Basic assumptions

We wish to build a theory of stellar evolution to explain the observational constraints highlighted
above. In order to do so we must make some basic assumptions:

• stars are considerd to beisolatedin space, so that their structure and evolution depend only on
intrinsic properties (mass and composition). For most single stars inthe Galaxy this condition
is satisfied to a high degree (compare for instance the radiusof the Sun with the distance to
its nearest neighbour Proxima Centauri, see exercises). However, for stars in dense clusters, or
in binary systems, the evolution can be influenced by interaction with neighbouring stars. In
this course we will mostly ignore these complicating effects (many of which are treated in the
Master course onBinary Stars).

• stars are formed with ahomogeneous composition, a reasonable assumption since the molecular
clouds out of which they form are well-mixed. We will often assume a so-called ‘quasi-solar’
composition (X = 0.70, Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity down toZ = 0.015. In practice there is relatively
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little variation in composition from star to star, so that the initial mass is the most important
parameter that determines the evolution of a star. The composition, in particular the metallicity
Z, is of secondary influence but can have importtant effects especially in very metal-poor stars
(see§ 1.3).

• spherical symmetry, which is promoted by self-gravity and is a good approximation for most
stars. Deviations from spherical symmetry can arise if non-central forces become important
relative to gravity, in particular rotation and magnetic fields. Although many stars are observed
to have magnetic field, the field strength (even in highly magnetized neutron stars) is always
negligible compared to gravity. Rotation can be more important, although for the majority of
stars (e.g. the Sun) the forces involved are small compared to gravity. However, some rapidly
rotating stars are seen (by means of interferometry) to be substantially flattened.

1.5 Aims and overview of the course

In the remainder of this course we will:

• understand the global properties of stars: energetics and timescales

• study the microphysics relevant for stars: the equation of state, nuclear reactions, energy trans-
port and opacity

• derive the equations necessary to model the internal structure of stars

• examine (quantitatively) the properties of simplified stellar models

• survey (mostly qualitatively) how stars of different masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

• discuss a few ongoing research areas in stellar evolution

Suggestion for further reading

The contents of this introductory chapter are also largely covered by Chapter 1 of P, which
provides nice reading. (Be aware, however, that the lower end of the mass-luminosity relation shown
in Fig. 1.6 is wrong, it has a slope that is too large!)
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Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass conservation, momentum conservation and
energy conservation to derive three of the fundamental stellar structure equations. We shall see that
stars are generally in a state of almost completemechanical equilibrium, which allows us to derive
and apply the importantvirial theorem. We consider the basic stellar timescales and see that most
(but not all) stars are also in a state of energy balance called thermal equilibrium.

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all interior physical quantities (such as densityρ,
pressureP, temperatureT, etc) depend only on one radial coordinate. The obvious coordinate to use
in a Eulerian coordinate system is the radius of a spherical shell, r (∈ 0 . . .R).

In an evolving star, all quantities also depend on timet but this is not explicitly noted in the
following: a derivatived/dr (or d/dm) should be taken to mean the partial derivative with respectto
the space coordinate, at constant time.

The principle of mass conservation (assuming a steady state, i.e. ignoring a time-varying mass
flow) yields the massdmof a spherical shell of thicknessdr at radiusr (see Fig. 2.1) as

dm= ρdV = ρ4πr2dr ⇒ dm
dr
= 4πr2ρ. (2.1)

Note thatρ = ρ(r) is not known a priori, and must follow from other conditionsand equations. The
differential form of the above equation is therefore the first fundamental equation of stellar structure.
Integration yields the massm(r) inside a spherical shell of radiusr:

m(r) =
∫ r

0
4πr′2ρdr′. (2.2)

Sincem(r) increases monotonically outward, we can also usem(r) as our radial coordinate, instead
of r. This mass coordinate, often denoted asmr or simplym, is a Lagrangian coordinate that moves
with the mass shells:

m := mr =

∫ r

0
4πr′2ρdr′ (m ∈ 0 . . . M) (2.3)

It is often more convenient to use a Lagrangian coordinate instead of a Eulerian coordinate. The mass
coordinate is defined on a fixed interval,m ∈ 0 . . .M, as long as the star does not lose mass. On the
other handr depends on the time-varying stellar radiusR. Furthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the time derivatives that appear in the stellar

7



m

m+dm

dm

F

r

g
P(r)

P(r+dr)

dr

dS

Figure 2.1. Mass shell inside a spherically symmetric
star, at radiusr and with thicknessdr. The mass of the
shell isdm= 4πr2ρdr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
also indicated.

evolution equations (e.g. equations for the composition).We can thus write all quantities as functions
of m, i.e. r = r(m), ρ = ρ(m), P = P(m), etc.

Using the coordinate transformationr → m, i.e.

d
dm
=

d
dr
· dr

dm
(2.4)

the first equation of stellar structure becomes in terms of the coordinatem:

dr
dm
=

1

4πr2ρ
(2.5)

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, which implies that gravity is the driving force
behind stellar evolution. In the general, non-spherical case, the gravitational acceleration~g can be
written as the gradient of the gravitational potential,~g = −~∇Φ, whereΦ is the solution of the Poisson
equation

∇2Φ = 4πGρ.

Inside a spherically symmetric body, this reduces tog := |~g| = dΦ/dr. The gravitational acceleration
at radiusr and equivalent mass coordinatem is then given by

g =
Gm

r2
. (2.6)

Spherical shells outsider apply no net force, so thatg only depends on the mass distribution inside
the shell at radiusr. Note thatg is the magnitude of the vector~g which points inward (toward smaller
r or m).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a star, i.e. Newton’s second law of mechanics.
The net acceleration on a gas element is determined by the sumof all forces acting on it. In addition to
the gravitational force considered above, forces result from the pressure exerted by the gas surround-
ing the element. Due to spherical symmetry, the pressure forces acting horizontally (perpendicular to
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the radial direction) balance each other and only the pressure forces acting along the radial direction
need to be considered. By assumption we ignore other forces that might act inside a star (Sect. 1.4).

Hence the net acceleration ¨r = ∂2r/∂t2 of a (cylindrical) gas element with mass

dm= ρdr dS (2.7)

(wheredr is its radial extent anddS is its horizontal surface area, see Fig. 2.1) is given by

r̈ dm= −g dm+ P(r) dS− P(r + dr) dS. (2.8)

We can writeP(r + dr) = P(r) + (dP/dr) · dr, hence after substituting eqs. (2.6) and (2.7) we obtain
theequation of motionfor a gas element inside the star:

r̈ = −Gm

r2
− 1
ρ

dP
dr
. (2.9)

Writing the pressure gradient in terms of the mass coordinate mby substituting eq. (2.5), the equation
of motion is

r̈ = −Gm

r2
− 4πr2 dP

dm
. (2.10)

Hydrostatic equilibrium The great majority of stars are obviously in such long-livedphases of
evolution that no change can be observed over human lifetimes. This means there is no noticeable
acceleration, and all forces acting on a gas element inside the star almost exactly balance each other.
Thus most stars are in a state of mechanical equilibrium which is more commonly calledhydrostatic
equilibrium (HE).

The state of hydrostatic equilibrium, setting ¨r = 0 in eq. (2.9), yields the second differential
equation of stellar structure:

dP
dr
= −Gm

r2
ρ, (2.11)

or with eq. (2.5)

dP
dm
= − Gm

4πr4
(2.12)

A direct consequence is that inside a star in hydrostatic equilibrium, the pressure always decreases
outwards.

Eqs. (2.5) and (2.12) together determine themechanical structureof a star in HE. These are
two equations for three unknown functions ofm (r, P andρ), so they cannot be solved without a
third condition. This condition is usually a relation between P andρ called theequation of state
(see Chapter 3). In general the equation of state depends on the temperatureT as well, so that the
mechanical structure depends also on the temperature distribution inside the star, i.e. on its thermal
structure. In special cases the equation of state is independent of T, and can be written asP =
P(ρ). In such cases (known as barotropes or polytropes) the mechanical structure of a star becomes
independent of its thermal structure. This is the case for white dwarfs, as we shall see later.
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Estimates of the central pressure A rough order-of-magnitude estimate of the central pressure can
be obtained from eq. (2.12) by setting

dP
dm
∼ Psurf − Pc

M
≈ −Pc

M
, m∼ 1

2 M, r ∼ 1
2R

which yields

Pc ∼
2
π

GM2

R4
(2.13)

For the Sun we obtain from this estimatePc ∼ 7× 1015 dyn/cm2 = 7× 109 atm.
A lower limit on the central pressure may be derived by writing eq. (2.12) as

dP
dr
= − Gm

4πr4

dm
dr
= − d

dr

(

Gm2

8πr4

)

− Gm2

2πr5
,

and thus

d
dr

(

P+
Gm2

8πr4

)

= −Gm2

2πr5
< 0. (2.14)

The quantityΨ(r) = P+Gm2/(8πr4) is therefore a decreasing function ofr. At the centre, the second
term vanishes becausem ∝ r3 for small r, and henceΨ(0) = Pc. At the surface, the pressure is
essentially zero. From the fact thatΨ must decrease withr it thus follows that

Pc >
1
8π

GM2

R4
. (2.15)

In contrast to eq. (2.13), this is a strict mathematical result, valid for any star in hydrostatic equilibrium
regardless of its other properties (in particular, regardless of its density distribution). For the Sun we
obtainPc > 4.4 × 1014 dyn/cm2. Both estimates indicate that an extremely high central pressure is
required to keep the Sun in hydrostatic equilibrium. Realistic solar models show the central density
to be 2.4× 1017 dyn/cm2.

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibrium is violated: how fast do changes
to the structure of a star occur? The answer is provided by theequation of motion, eq. (2.9). For
example, suppose that the pressure gradient that supports the star against gravity suddenly drops. All
mass shells are then accelerated inwards by gravity: the star starts to collapse in “free fall”. We can
approximate the resulting (inward) acceleration by

|r̈ | ≈ R

τff2
⇒ τff ≈

√

R
|r̈ |

whereτff is the free-fall timescale that we want to determine. Since−r̈ = g ≈ GM/R2 for the entire
star, we obtain

τff ≈

√

R
g
≈

√

R3

GM
. (2.16)

Of course each mass shell is accelerated at a different rate, so this estimate should be seen as an
average value for the star to collapse over a distanceR. This provides one possible estimate for the
dynamical timescaleof the star. Another estimate can be obtained in a similar wayby assuming that
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gravity suddenly disappears: this gives the timescale for the outward pressure gradient to explode the
star, which is similar to the time it takes for a sound wave to travel from the centre to the surface of
the star. If the star is close to HE, all these timescales haveabout the same value given by eq. (2.16).
Since the average density ¯ρ = 3M/(4πR3), we can also write this (hydro)dynamical timescale as

τdyn ≈
√

R3

GM
≈ 1

2 (Gρ̄)−1/2. (2.17)

For the Sun we obtain a very small value ofτdyn ≈ 1600 sec or about half an hour (0.02 days). This
is very much smaller than the age of the Sun, which is 4.6 Gyr or∼ 1.5 × 1017 sec, by 14 orders of
magnitude. This result has several important consequencesfor the Sun and other stars:

• Any significant departure from hydrostatic equilibrium should very quickly lead to observable
phenomena: either contraction or expansion on the dynamical timescale. If the star cannot
recover from this disequilibrium by restoring HE, it shouldlead to a collapse or an explosion.

• Normally hydrostatic equilibrium can be restored after a disturbance (we will consider this
dynamical stabilityof stars later). However a perturbation of HE may lead to small-scale oscil-
lations on the dynamical timescale. These are indeed observed in the Sun and many other stars,
with a period of minutes in the case of the Sun. Eq. (2.17) tells us that the pulsation period is a
(rough) measure of the average density of the star.

• Apart from possible oscillations, stars are extremely close to hydrostatic equilibrium, since
any disturbance is immediately quenched. We can therefore be confident that eq. (2.12) holds
throughout most of their lifetimes. Stars do evolve and are therefore not completely static, but
changes occur very slowly compared to their dynamical timescale. Stars can be said to evolve
quasi-statically, i.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is thevirial theorem, which is of vital impor-
tance for the understanding of stars. It connects two important energy reservoirs of a star and allows
predictions and interpretations of important phases in theevolution of stars.

To derive the virial theorem we start with the equation for hydrostatic equilibrium eq. (2.12). We
multiply both sides by the enclosed volumeV = 4

3πr3 and integrate overm:

∫ M

0

4
3πr3 dP

dm
dm= −1

3

∫ M

0

Gm
r

dm (2.18)

The integral on the right-hand side has a straightforward physical interpretation: it is thegravitational
potential energyof the star, i.e. the energy required to assemble the star by bringing matter from
infinity,

Egr = −
∫ M

0

Gm
r

dm (2.19)

The left-hand side of eq. (2.18) can be integrated by parts:

∫ Ps

Pc

VdP= [V · P]s
c −

∫ Vs

0
PdV (2.20)
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wherec ands denote central and surface values. The first term vanishes becauseV = 0 at the centre
and the pressure practically vanishes at the surface,P(M) ≈ 0. Combining the above equations we
obtain

−3
∫ Vs

0
PdV = Egr, (2.21)

or, sincedV = dm/ρ,

−3
∫ M

0

P
ρ

dm= Egr. (2.22)

This is the general form of the virial theorem, which will prove valuable later. It tells us that that the
average pressure needed to support a star in HE is equal to−1

3Egr/V. In particular it tells us that a
star that contracts quasi-statically (that is, slowly enough to remain in HE) must increase its internal
pressure, since|Egr| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We will
show this in Ch. 3, but for the particular case of an ideal monatomic gas it is easy to see. The pressure
of an ideal gas is given by

P = nkT =
ρ

µmu
kT, (2.23)

wheren = N/V is the number of particles per unit volume, andµ is mass of a gas particle in atomic
mass units. The kinetic energy per particle isǫk =

3
2kT, and the internal energy of an ideal monatomic

gas is equal to the kinetic energy of its particles. The internal energy per unit mass is then

u =
3
2

kT
µmu

=
3
2

P
ρ
. (2.24)

We can now interpret the left-hand side of the virial theorem(eq. 2.22) as
∫

(P/ρ)dm= 2
3

∫

udm=
2
3Eint, whereEint is the total internal energy of the star. The virial theorem for an ideal gas is therefore

Eint = −1
2Egr (2.25)

This important relation establishes a link between the gravitational potential energy and the internal
energy of a star in hydrostatic equilibrium that consists ofan ideal gas. (We shall see later that the
ideal gas law indeed holds for most stars, at least on the mainsequence.) The virial theorem tells
us that a more tightly bound star must have a higher internal energy, i.e. it must behotter. In other
words, a star that contracts quasi-statically must get hotter in the process. The full implications of this
result will become clear when we consider the total energy ofa star in a short while.

Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temparature inside a star composed of ideal gas. Thegravitational energy of the star is found
from eq. (2.19) and can be written as

Egr = −α
GM2

R
, (2.26)

whereα is a constant of order unity (determined by the distributionof matter in the star, i.e. by
the density profile). Using eq. (2.24), the internal energy of the star isEint =

3
2k/(µmu)

∫

Tdm =
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3
2k/(µmu)T̄ M, whereT̄ is the temperature averaged over all mass shells. By the virial theorem we
then obtain

T̄ =
α

3
µmu

k
GM
R

. (2.27)

Takingα ≈ 1 andµ = 0.5 for ionized hydrogen, we obtain for the Sun̄T ∼ 4 × 106 K. This is the
average temperature required to provide the pressure that is needed to keep the Sun in hydrostatic
equilibrium. Since the temperature in a star normally decreses outwards, it is also an approximate
lower limit on the central temperature of the Sun. At these temperatures, hydrogen and helium are
indeed completely ionized. We shall see thatTc ≈ 107 K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exists,which we can write generally as

u = φ
P
ρ
. (2.28)

We have seen above thatφ = 3
2 for an ideal gas, but it will turn out (see Ch. 3) that this is valid not

only for an ideal gas, but for all non-relativistic particles. On the other hand, if we consider a gas of
relativistic particles, in particular photons (i.e. radiation pressure),φ = 3. If φ is constant throughout
the star we can integrate the left-hand side of eq. (2.21) to obtain a more general form of the virial
theorem:

Eint = −1
3φEgr (2.29)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational potential energy, its internal energy and its
kinetic energyEkin (due to bulk motions of gas inside the star, not the thermal motions of the gas
particles):

Etot = Egr + Eint + Ekin. (2.30)

The star is bound as long as its total energy is negative.
For a star in hydrostatic equilibrium we can setEkin = 0. Furthermore for a star in HE the virial

theorem holds, so thatEgr andEint are tightly related by eq. (2.29). Combining eqs. (2.29) and(2.30)
we obtain the following relations:

Etot = Eint + Egr =
φ − 3
φ

Eint = (1− 1
3φ)Egr (2.31)

As long asφ < 3 the star is bound. This is true in particular for the important case of a star consisting
of an ideal gas (eq. 2.25, for which we obtain

Etot = Eint + Egr = − Eint =
1
2Egr < 0 (2.32)

In other words, its total energy of such a star equals half of its gravitational potential energy.
From eq. (2.32) we can see that the virial theorem has the following important consequences:

• Gravitationally bound gas spheres must behot to maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The more compact such a sphere, the more
strongly bound, and therefore the hotter it must be.

13



• A hot sphere of gas radiates into surrounding space, therefore a star must lose energy from its
surface. The rate at which energy is radiated from the surface is theluminosityof the star. In
the absence of an internal energy source, this energy loss must equal the decrease of the total
energy of the star:L = −dEtot/dt > 0, sinceL is positive by convention.

• Taking the time derivative of eq. (2.32), we find that as a consequence of losing energy:

Ėgr = −2L < 0,

meaning that the starcontracts(becomes more strongly bound), and

Ėint = L > 0,

meaning that the stargets hotter– unlike familiar objects which cool when they lose energy.
Therefore a star can be said to have anegative heat capacity. Half the energy liberated by
contraction is used for heating the star, the other half is radiated away.

For the case of a star that is dominated by radiation pressure, we find thatEint = −Egr, and there-
fore the total energyEtot = 0. Therefore a star dominated by radiation pressure (or moregenerally,
by the pressure of relativistic particles) is only marginally bound. No energy is required to expand or
contract such a star, and a small perturbation would be enough to render it unstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are present in a star due to nuclear reactions taking place in the interior, then
the energy loss from the surface can be compensated:L = Lnuc ≡ −dEnuc/dt. In that case the total
energy is conserved and eq. (2.32) tells us thatĖtot = Ėint = Ėgr = 0. The virial theorem therefore
tells us that bothEint andEgr are conserved as well: the star cannot, for example, contract and cool
while keeping its total energy constant.

In this state, known asthermal equilibrium(TE), the star is in a stationary state: it neither expands
nor contracts, and it maintains a constant interior temperature. We shall see later that this temperature
is regulated by the nuclear reactions themselves, which in combination with the virial theorem act
like a stellar thermostat. Main-sequence stars like the Sunare in thermal equilibrium, and a star can
remain in this state as long as nuclear reactions can supply the necessary energy.

2.4 Local energy conservation

The previous section dealt with the global energy budget of astar. We have still to consider the
conservation of energy on a local scale in the stellar interior, which leads us the third stellar structure
equation.

The first law of thermodynamics states that the internal energy of a system can be changed by
two forms of energy transfer: heat and work. Heat may be addedor extracted, and work may be
done on the system or performed by the system, and involves a change of its volume: expansion or
contraction. Consider a spherical, Lagrangian shell inside the star of constant massdm. By δ f we
denote a change in a quantityf occurring in a small time intervalδt. If u is the internal energy per
unit mass, then the first law can be written as

δu dm= δQ+ δW (2.33)

14



whereδQ is the amount of heat absorbed or emitted by the shell, andδW is the work done on the
shell,

δW = −Pδ(dV) = −Pδ

(

1
ρ

)

dm=
P

ρ2
δρdm. (2.34)

In the last equationdV = dm/ρ is the volume of the mass element, anddm is constant. We note that
compression (δρ > 0) involves an addition of energy, and expansion is achievedat the expense of the
element’s own energy.

Changes in the heat content of the shellδQ can occur due to a number of sources and sinks:

• Heat is added by the release of nuclear energy, if available.The rate at which nuclear energy
is produced per unit mass and per second is written asǫnuc. The details of nuclear energy
generation will be treated in Ch. 5.

• Heat can be removed by the release of energetic neutrinos, which escape from the stellar interior
without interaction. Neutrinos are released as a by-product of some nuclear reactions, in which
case they are accounted for inǫnuc. But neutrinos can also be released by weak interaction
processes in very hot and dense plasmas. This type of neutrino production plays a role in late
phases of stellar evolution, and the rate at which these neutrinos take away energy per unit mass
is written asǫν.

• Finally, heat is absorbed or emitted according to the balance of heat fluxes flowing into and out
of the shell (see Fig. 2.2). We define a new variable, thelocal luminosity l, as the rate at which
energy in the form of heat flows outward through a sphere of radius r. Therefore at the surface
l = L while at the centrel = 0. Normally heat flows outwards, in the direction of decreasing
temperature. Thereforel is usually positive, but under some circumstances (e.g. cooling of
central regions by neutrino emission) heat can flow inwards,meaning thatl is negative.

We can therefore write:

δQ = ǫnucdmδt − ǫν dmδt + l(m) δt − l(m+ dm) δt,

with l(m+ dm) = l(m) + (dl/dm) · dm, so that

δQ =

(

ǫnuc− ǫν −
dl
dm

)

dmδt. (2.35)

m

m+dm

l(m+dm)

l(m)

ε dm

Figure 2.2. Energy generation and heat flow into and
out of a spherical mass shell.
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Substituting eqs. (2.34) and (2.35) into eq. (2.33) and dividing bydmwe obtain

δu− P

ρ2
δρ =

(

ǫnuc− ǫν −
dl
dm

)

δt,

which in the limitδt → 0 yields us the third equation of stellar evolution:

dl
dm
= ǫnuc− ǫν −

∂u
∂t
+

P

ρ2

∂ρ

∂t
(2.36)

In thermal equilibrium(see Sec. 2.3.2), the star is in a stationary state and the time derivatives
vanish. We then obtain a much simpler stellar structure equation,

dl
dm
= ǫnuc− ǫν. (2.37)

If we integrate this equation over the mass we obtain

L =
∫ M

0
ǫnucdm−

∫ M

0
ǫν dm≡ Lnuc− Lν (2.38)

which defines the nuclear luminosityLnuc and the neutrino luminosityLν. Neglecting the neutrino
losses for the moment, we see that thermal equilibrium implies thatL = Lnuc, that is, energy is
radiated away at the surface at the same rate at which it is produced by nuclear reactions in the
interior.

2.5 The timescales of stellar evolution

Three important timescales are relevant for stellar evolution, associated with changes to the mechani-
cal structure of a star (described by eq. 2.10), changes to its thermal structure (described by eq. 2.36),
and changes in its composition, which are still to be discussed in Ch. 5.

The first timescale was already treated in Sec. 2.2.1: it is the dynamical timescalegiven by
eq. (2.17),

τdyn ≈
√

R3

GM
≈ 0.02

(

R
R⊙

)3/2(
M⊙
M

)1/2

days (2.39)

The dynamical timescale is the timescale on which a star reacts to a perturbation of hydrostatic equi-
librium. We saw that this timescale is typically of the orderof hours or less, which means that stars
are extremely close to hydrostatic equilibrium.

2.5.1 The thermal timescale

The second timescale describes how fast changes in the thermal structure of a star can occur. It is
therefore also the timescale on which a star in thermal equilibrium reacts when its TE is perturbed.
To obtain an estimate, we turn to the virial theorem: we saw inSec. 2.3.1 that a star without a nuclear
energy source contracts by radiating away its internal energy content:L = Ėint ≈ −2Ėgr, where the
last equality applies strictly only for an ideal gas. We can thus define thethermalor Kelvin-Helmholtz
timescaleas the timescale on which this gravitational contraction would occur:

τKH =
Eint

L
≈
|Egr|
2L
≈ GM2

2RL
≈ 1.5× 107

(

M
M⊙

)2
R⊙
R

L⊙
L

yr (2.40)

16



Here we have used eq. 2.26 forEgr with α ≈ 1.
The thermal timescale for the Sun is about 1.5 × 107 years, which is many orders of magnitude

larger than the dynamical timescale. There is therefore no direct observational evidence that any star
is in thermal equilibrium, and in the late 19th century (before the importance of nuclear reactions was
recognized) gravitational contraction was proposed as theenergy source of the Sun by Lord Kelvin
and, independently, by Hermann von Helmholtz. Nuclear reactions have since turned out to be a
much more powerful energy source, allowing stars to be in thermal equilibrium for most (> 99 %) of
their lifetimes. However, several phases of stellar evolution, during which the nuclear power source
is absent or inefficient, do occur on the thermal timescale.

2.5.2 The nuclear timescale

A star can remain in thermal equilibrium for as longs as its nuclear fuel supply lasts. The associated
timescale is called thenuclear timescale, and since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), it is also the timescale on which composition changes in the stellar interior occur.

The energy source of nuclear fusion is the direct conversionof a small fractionφ of the rest mass
of the reacting nuclei into energy. For hydrogen fusion,φ ≈ 0.007; for fusion of helium and heavier
elementsφ is smaller by a factor 10 or more. The total nuclear energy supply can therefore be written
asEnuc = φMnucc2 = φ fnucMc2, where fnuc is that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriumL = Lnuc = Ėnuc, so we can estimate the nuclear timescale as

τnuc =
Enuc

L
= φ fnuc

Mc2

L
≈ 1010 M

M⊙

L⊙
L

yr. (2.41)

The last approximate equality holds for hydrogen fusion in astar like the Sun, with has 70 % of its
initial mass in hydrogen and fusion occurring only in the inner ≈ 10 % of its mass (the latter result
comes from detailed stellar models). This long timescale isconsistent with the geological evidence
for the age of the Earth.

We see that, despite only a small fraction of the mass being available for fusion, the nuclear
timescale is indeed two to three orders of magnitude larger than the thermal timescale. Therefore the
assumption that stars can reach a state of thermal equilibrium is justified. To summarize, we have
found:

τnuc≫ τKH ≫ τdyn.

As a consequence, the rates of nuclear reactions determine the pace of stellar evolution, and stars may
be assumed to be in hydrostatic and thermal equilibrium throughout most of their lives.

Suggestion for further reading

The contents of this chapter are covered more extensively byChapters 1 to 4 of K &
W.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolated from the rest of the Universe, matter and
radiation tend towards a state ofthermodynamic equilibrium. This equilibrium state is achieved when
sufficient interactions take place between the material particles (‘collisions’) and between the pho-
tons and mass particles (scatterings and absorptions). In such a state of thermodynamic equilibrium
the radiation field becomes isotropic and the photon energy distribution is described by the Planck
function (blackbody radiation). The statistical distribution functions of both the mass particles and
the photons are then characterized by a single temperatureT.

We know that stars are not isolated systems, because they emit radiation and generate (nuclear)
energy in their interiors. Indeed, the surface temperatureof the Sun is about 6000 K, while we have
estimated from the virial theorem (Sec. 2.3) that the interior temperature must of the order of 107 K.
Therefore stars arenot in global thermodynamic equilibrium. However, it turns outthat locally within
a star, a state of thermodynamic equilibriumisachieved. This means that within a region much smaller
than the dimensions of a star (≪ R∗), but larger than the average distance between interactions of the
particles (both gas particles and photons), i.e. larger than the mean free path, there is a well-defined
local temperaturethat describes the particle statistical distributions.

We can make this plausible by considering the mean free path for photons:

ℓph = 1/κρ

whereκ is the opacity coefficient, i.e. the effective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cross section, which isκes = 0.4 cm2/g (see
Ch. 4). The average density in the Sun is ¯ρ = 1.4 g/cm3, which gives a mean free path of the order
of ℓph ∼ 1 cm. In other words, stellar matter is very opaque to radiation. The temperature difference
over a distanceℓph, i.e. between emission and absorption, can be estimated as

∆T ≈ dT
dr
ℓph ≈

Tc

R
ℓph ≈

107

1011
≈ 10−4 K

which is a tiny fraction (10−11) of the typical interior temperature of 107 K. Using a similar estimate,
it can be shown that the mean free path for interactions between ionized gas particles (ions and
electrons) is several orders of magnitude smaller thanℓph. Hence a small region can be defined
(a ‘point’ for all practical purposes) which is> ℓph but much smaller than the length scale over
which significant changes of thermodynamic quantities occur. This is calledlocal thermodynamic
equilibrium (LTE). We can therefore assume a well-defined temperature distribution inside the star.
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Furthermore, the average time between particle interactions (the mean free time) is much shorter
than the timescale for changes of the macroscopic properties. Therefore a state of LTE is secured
at all times in the stellar interior. The assumption of LTE1 constitutes a great simplification. It
enables the calculation of all thermodynamic properties ofthe stellar gas in terms of the local values
of temperature, density and composition, as they change from the centre to the surface.

3.2 The equation of state

The equation of state (EOS) describes the microscopic properties of stellar matter, for given density
ρ, temperatureT and compositionXi . It is usually expressed as the relation between the pressure and
these quantities:

P = P(ρ,T,Xi) (3.1)

Using the laws of thermodynamics, and a similar equation forthe internal energyU(ρ,T,Xi), we can
derive from the EOS the thermodynamic properties that are needed to describe the structure of a star,
such as the specific heatscV andcP, the adiabatic exponentγad and the adiabatic temperature gradient
∇ad.

An example is the ideal-gas equation of state, which in the previous chapters we have tacitly
assumed to hold for stars like the Sun:

P = nkT or P =
k
µmu

ρT.

In this chapter we will see whether this assumption was justified, and how the EOS can be extended to
cover all physical conditions that may prevail inside a star. The ideal-gas law pertains to particles that
behave according to classical physics. However, both quantum-mechanical and special relativistic ef-
fects may be important under the extreme physical conditions in stellar interiors. In addition, photons
(which can be described as extremely relativistic particles) can be an important source of pressure.

We can define an ideal orperfectgas as a mixture of free, non-interacting particles. Of course
the particles in such a gas do interact, so more precisely we require that their interaction energies
are small compared to their kinetic energies. In that case the internal energy of the gas is just the
sum of all kinetic energies. From statistical mechanics we can derive the properties of such a perfect
gas, both in the classical limit (recovering the ideal-gas law) and in the quantum-mechanical limit
(leading to electron degeneracy), and both in the non-relativistic and in the relativistic limit (e.g. valid
for radiation).

In addition, variousnon-idealeffects may become important. The high temperatures (> 106 K) in
stellar interiors ensure that the gas will be fully ionized,but at lower temperatures (in the outer layers)
partial ionization has to be considered, with important effects on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gaselectrostatic interactionsbetween the ions and electrons
may be important under certain circumstances.

3.2.1 The perfect gas approximation

Is the perfect gas approximation reasonable in stellar interiors, i.e. are the interaction energies indeed
small compared to the kinetic energies?

1N.B. note the difference between (local)thermodynamic equilibrium(Tgas(r) = Trad(r) = T(r)) and the earlier defined,
global property ofthermal equilibrium(Etot = const, orL = Lnuc).
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The average distance between gas particles (with massAmu) is d ≈ (4π
3 n)−1/3 wheren is the

number density,n = ρ/(Amu). The typical Coulomb energy per particle (with chargeZe) is ǫC ≈
Z2e2/d, so that the ratio of Coulomb energy to average kinetic energy, ǫkin =

3
2kT, is

ǫC

ǫkin
≈ Z2e2

d kT
≈ Z2e2

(Amu)1/3

ρ1/3

kT
. (3.2)

We see that Coulomb interactions increase in importance at high densities or low temperatures. To
estimate the ratioǫC/ǫkin in stellar interiors we approximateρ ≈ ρ̄ = M/(4π

3 R3), and we approximate
T by the average temperature estimated from the virial theorem, T ≈ T̄ ≈ 1

3
Amu

k
GM

R . Ignoring factors
of order unity, we get

ǫC

ǫkin
≈ Z2e2

(Amu)4/3G
M−2/3 ≈ 0.01

Z2

A4/3

(

M
M⊙

)−2/3

. (3.3)

The ratioZ2/A4/3 depends on the composition, and represents an average over the constituents of the
gas. In stars mostly composed of hydrogen,A ≈ 1 andZ ≈ 1, and we find that in the Sun the Coulomb
energy contributes of the order of 1 % to the particle energies (and hence has a similar effect on the
pressure). We are therefore justified in ignoring Coulomb interactions in stars, certainly in those
similar or more massive than the Sun. However, eq. (3.3) shows that in low-mass stars Coulomb
interactions can start to contribute significantly, and detailed models of such stars need to take this
into account. ForM ∼< 10−3 M⊙ the Coulomb energies dominate, however, such objects are not stars
but planets (Jupiter’s mass is about 10−3 M⊙). Calculations of the structure of planets requires a much
more complicated equation of state than for stars.

3.3 The equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas from the principles of statistical mechanics. This
provides a description of the ions, the electrons, as well asthe photons in the deep stellar interior.

Let n(p) be the distribution of momenta of the gas particles, i.e.n(p)dp represents the number of
particles per unit volume with momentap ∈ [p . . . p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the internalenergy density (internal energy per unit
volume) and the pressure can be obtained from the following integrals:

number density n =
∫ ∞

0
n(p)dp (3.4)

internal energy density U =
∫ ∞

0
ǫpn(p)dp= n〈ǫp〉 (3.5)

pressure P = 1
3

∫ ∞

0
pvpn(p)dp= 1

3n〈pvp〉 (3.6)

Hereǫp is the kinetic energy of a particle with momentump, andvp is its velocity. Eq. (3.4) is trivial,
and eq. (3.5) follows from the perfect-gas assumption. The pressure integral eq. (3.6) requires some
explanation.

Consider a gas ofn particles in a cubical box with sides of lengthL = 1 cm. Each particle bounces
around in the box, and the pressure on one side of the box results from the momentum imparted by
all the particles colliding with it. Consider a particle with momentump and corresponding velocityv
coming in at an angleθ with the normal to the surface, as depicted in Fig. 3.1. The time between two
collisions with the same side is

∆t =
2L

vcosθ
=

2
vcosθ

.
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θ

= 1cmL

Figure 3.1. Gas particle in a cubical box with a volume of 1 cm3. Each
collision with the side of the box results in a transfer of momentum; the
pressure inside the box is the result of the collective momentum transfers of
all n particles in the box.

The collisions are elastic, so the momentum transfer is twice the momentum component perpendicular
to the surface,

∆p = 2pcosθ. (3.7)

The momentum transferred per particle per second and per cm2 is therefore

∆p
∆t
= vp cos2 θ. (3.8)

The number of particles in the box withp ∈ [p . . . p + dp] and θ ∈ [θ . . . θ + dθ] is denoted as
n(θ, p) dθ dp. The contribution to the pressure from these particles is then

dP= vp cos2 θ n(θ, p) dθ dp. (3.9)

Since the momenta are distributed isotropically over all directions within a solid angle 2π, and
the solid angledω subtended by those particles withθ ∈ [θ . . . θ + dθ] equals 2π sinθ dθ, we have
n(θ, p) dθ = n(p) sinθ dθ and

dP= vp n(p) cos2 θ sinθ dθ dp. (3.10)

The total pressure is obtained by integrating over all angles (0≤ θ ≤ π/2) and momenta. This results

in eq. (3.6) since
∫ π/2

0
cos2 θ sinθ dθ =

∫ 1

0
cos2 θ dcosθ = 1

3.

3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are related to their momenta according to special rela-
tivity:

ǫ2 = p2c2 +m2c4, ǫp = ǫ −mc2 (3.11)

and

vp =
∂ǫ

∂p
=

pc2

ǫ
. (3.12)

We can obtain generally valid relations between the pressure and the internal energy of a perfect gas
in the non-relativistic (NR) limit and the extremely relativistic (ER) limit:

NR limit: in this case the momentap≪ mc, so thatǫp = ǫ −mc2 = 1
2 p2/m andv = p/m. Therefore

〈pv〉 = 〈p2/m〉 = 2〈ǫp〉 so that eq. (3.6) yields

P = 2
3U (3.13)
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ER limit: in this casep≫ mc, so thatǫp = pcandv = c. Therefore〈pv〉 = 〈pc〉 = 〈ǫp〉, and eq. (3.6)
yields

P = 1
3U (3.14)

These relations are generally true, forany particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chapter, the change from2

3 to 1
3 in the relation

has important consequences for the virial theorem, and for the stability of stars.

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can address theorigin of the ideal-gas law. The mo-
mentum distributionn(p) for classical, non-relativistic particles of massm in LTE is given by the
Maxwell-Boltzmanndistribution:

n(p)dp=
n

(2πmkT)3/2
e−p2/2mkT 4πp2 dp. (3.15)

Here the exponential factor (e−ǫp/kT) represents the equilibrium distribution of kinetic energies, the
factor 4πp2 dp is the volume in momentum space (px, py, pz) for p ∈ [p . . . p + dp], and the factor
n/(2πmkT)3/2 comes from the normalization of the total number densityn imposed by eq. (3.4). (You
can verify this by starting from the standard integral

∫ ∞
0 e−ax2

dx = 1
2

√
π/a, and differentiating once

with respect toa to obtain the integral
∫ ∞
0 e−ax2

x2dx.)
The pressure is calculated by usingv = p/m for the velocity in eq. (3.6):

P = 1
3

n

(2πmkT)3/2

∫ ∞

0

p2

m
e−p2/2mkT 4πp2dp. (3.16)

By performing the integration (for this you need to differentiate
∫ ∞
0 e−ax2

x2dxonce more with respect
to a) you can verify that this indeed yields the ideal gas law

P = nkT . (3.17)

(N.B. This derivation is for a gas ofnon-relativisticclassical particles, but it can be shown that the
same relationP = nkT is also valid forrelativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particles of massm. It should be obvious that for
a mixture of free particles of different species, it holds for the partial pressures of each of the con-
stituents of the gas separately. In particular, it holds forboth the ions and the electrons, as long as
quantum-mechanical effects can be ignored. The total gas pressure is then just the sum of partial
pressures

Pgas= Pion + Pe =
∑

i Pi + Pe = (
∑

i ni + ne)kT = nkT

whereni is the number density of ions of elementi, with massmi = Aimu and chargeZie. Thenni is
related to the density and the mass fractionXi of this element as

ni =
Xi ρ

Ai mu
and nion =

∑

i

Xi

Ai

ρ

mu
≡ 1
µion

ρ

mu
, (3.18)
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which defines the mean atomic mass per ionµion. The partial pressure due to all ions is then

Pion =
1
µion

ρ

mu
kT =

R
µion

ρT. (3.19)

We have used here the universal gas constantR = k/mu = 8.31447× 107 erg g−1 K−1. The number
density of electrons is given by

ne =
∑

i

Zini =
∑

i

ZiXi

Ai

ρ

mu
≡ 1
µe

ρ

mu
, (3.20)

which defines themean molecular weight per free electronµe. As long as the electrons behave like
classical particles, the electron pressure is thus given by

Pe =
1
µe

ρ

mu
kT =

R
µe
ρT. (3.21)

When the gas is fully ionized, we have for hydrogenZi = Ai = 1 while for helium and the most
abundant heavier elements,Zi/Ai ≈ 1

2. In terms of the hydrogen mass fractionX we then get

µe ≈
2

1+ X
, (3.22)

which for the Sun (X = 0.7) amounts toµe ≈ 1.18, and for hydrogen-depleted gas givesµe ≈ 2.
The total gas pressure is then given by

Pgas= Pion + Pe =
( 1
µion
+

1
µe

)

RρT =
R
µ
ρT (3.23)

where themean molecular weightµ is given by

1
µ
=

1
µion
+

1
µe
=

∑

i

(Zi + 1)Xi

Ai
. (3.24)

It is left as an exercise to show that for a fully ionized gas,µ can be expressed in terms of the mass
fractionsX, Y andZ as

µ ≈ 1

2X + 3
4Y+ 1

2Z
(3.25)

if we assume that for elements heavier than helium,Ai ≈ 2Zi ≈ 2(Zi + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with which a particle’s location and momentum can
be known simultaneously is limited by Heisenberg’s uncertainty principle, i.e.∆x∆p ≥ h. In three
dimensions, this means that if a particle is located within avolume element∆V then its localization
within three-dimensional momentum space∆3p is constrained by

∆V∆3p ≥ h3. (3.26)

The quantityh3 defines the volume in six-dimensional phase space of one quantum cell. Thenumber
of quantum statesin a spatial volumeV and with momentap ∈ [p . . . p+ dp] is therefore given by

g(p) dp= gs
V

h3
4πp2dp, (3.27)

wheregs is the number of intrinsic quantum states of the particle, e.g. spin or polarization.
The relative occupation of the available quantum states forparticles in thermodynamic equilib-

rium depends on the type of particle:
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• fermions(e.g. electrons or nucleons) obey the Pauli exclusion principle, which postulates that
no two such particles can occupy the same quantum state. The fraction of states with energyǫp

that will be occupied at temperatureT is given by

fFD(ǫp) =
1

e(ǫp−µ)/kT + 1
, (3.28)

which is always≤ 1.

• bosons(e.g. photons) have no restriction on the number of particles per quantum state, and the
fraction of states with energyǫp that is occupied is

fBE(ǫp) =
1

e(ǫp−µ)/kT − 1
, (3.29)

which can be> 1.

The actual distribution of momenta for particles in LTE is given by the product of the occupation
fraction f (ǫp) and the number of quantum states, given by eq. (3.27). The quantity µ appearing in
eqs. (3.28) and (3.29) is the so-calledchemical potential. It can be seen as a normalization constant,
determined by the total number of particles in the volume considered (i.e., by the constraint imposed
by eq. 3.4).

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, i.e.ge = 2. According to eq. (3.27), the maximum
number density of electrons with momentump allowed by quantum mechanics is therefore

nmax(p) dp=
ge

h3
4πp2dp=

8π

h3
p2dp. (3.30)

This is shown as the dotted line in Fig. 3.2. The actual momentum distribution of electronsne(p) is
given by the product of eq. (3.30) and eq. (3.28). In the non-relativistic limit we haveǫp = p2/2me,
giving

ne(p) dp=
2

h3

1

e(p2/2mekT)−ψ + 1
4πp2dp, (3.31)

where we have replaced the chemical potential by thedegeneracy parameterψ = µ/kT. The value of
ψ is determined by the constraint that

∫ ∞
0

ne(p) dp= ne (eq. 3.4).
The limitation imposed by the Pauli exclusion principle means that electrons can exert a higher

pressure than predicted by classical physics (eq. 3.21). Toillustrate this, in Fig. 3.2 the momentum
distribution eq. (3.31) is compared to the Maxwell-Boltzmann distribution for electrons, eq. (3.15),

nMB(p) dp=
ne

(2πmekT)3/2
e−p2/2mekT 4πp2dp. (3.32)

The situation shown is for an electron densityne = 6 × 1027 cm−3, which corresponds to a mass
density of 2× 104 g/cm−3 (assuming a hydrogen-depleted gas withµe = 2). At high temperatures,
T = 2 × 107 K, the momentum distribution (solid line) nearly coincideswith the M-B distribution
(dashed line): none of the quantum states are fully occupied(ne(p) < nmax(p) for all values ofp) and
the electrons behave like classical particles. As the temperature is decreased, e.g. atT = 2 × 106 K
(red lines), the peak in the M-B distribution shifts to smaller p and is higher (since the integral over

25



nmax

2.107 K2.106 K

2.105 K

ne = 6.1027 cm−3

0.0 0.2 0.4 0.6 0.8 1.0
10−17

0.

2.

4.

6.

8.

10+45

p

n(
p)

6.1027

cm−3
1.2.1028

cm−3

pF

pF

T = 0 K

0.0 0.2 0.4 0.6 0.8 1.0
10−17

0.

2.

4.

6.

8.

10+45

p
n(

p)

Figure 3.2. (left panel) Electron momentum distributionsn(p) for an electron density ofne = 6× 1027 cm−3

(corresponding toρ = 2 × 104 g/cm−3 if µe = 2), and for three different temperatures:T = 2 × 107 K (black
lines), 2×106 K (red lines) and 2×105 K (blue lines). The actual distributions, governed by quantum mechanics,
are shown as solid lines while the Maxwell-Boltzmann distributions for the samene andT values are shown
as dashed lines. The dotted linenmax is the maximum possible number distribution if all quantum states with
momentump are occupied. (right panel) Distributions in the limitT = 0, when all lowest available momenta
are fully occupied. The blue line is for the same density as inthe left panel, while the red line is for a density
two times as high.

the distribution must equalne). The number of electrons with small values ofp expected from clas-
sical physics,nMB(p), then exceeds the maximum allowed by the Pauli exclusion principle, nmax(p).
These electrons are forced to assume quantum states with higher p: the peak in the distributionne(p)
occurs at higherp. Due to the higher momenta and velocities of these electrons, the electron gas
exerts a higher pressure than inferred from classical physics. This is calleddegeneracy pressure. If
the temperature is decreased even more, e.g. atT = 2 × 105 K (blue lines), the lowest momentum
states become nearly all filled andne(p) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decrease ofT hardly changes the momentum distribution, so that the electron
pressure becomes nearlyindependent of temperature.

Complete electron degeneracy

In the limit thatT → 0, all available momentum states are occupied up to a maximumvalue, while
all higher states are empty, as illustrated in the right panel of Fig. 3.2. This is known ascomplete
degeneracy, and the maximum momentum is called theFermi momentum pF. Then we have

ne(p) =
8πp2

h3
for p ≤ pF, (3.33)

ne(p) = 0 for p > pF. (3.34)

The Fermi momentum is determined by the electron density through eq. (3.4), i.e.
∫ pF

0 ne(p) dp= ne,
which yields

pF = h
( 3
8π

ne

)1/3
. (3.35)
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Figure 3.3. The equation of state for completely
degenerate electrons. The slope of the logP-logρ
relation changes from 5/3 at relatively low densi-
ties, where the electrons are non-relativistic, to 4/3
at high density when the electrons are extremely
relativistic. The transition is smooth, but takes
place at densities aroundρtr ≈ 106µe g cm−3.

The pressure of a completely degenerate electron gas is now easy to compute using the pressure
integral eq. (3.6). It depends on whether the electrons are relativistic or not. In thenon-relativistic
limit we havev = p/m and hence

Pe =
1
3

∫ pF

0

8πp4

h3me
dp=

8π

15h3me
pF

5 =
h2

20me

(3
π

)2/3
ne

5/3. (3.36)

Using eq. (3.20) forne this can be written as

Pe = KNR

(

ρ

µe

)5/3

(3.37)

whereKNR =
h2

20me
(3/π)2/3m−5/3

u = 1.00× 1013 [cgs units]. As more electrons are squeezed into the
same volume, they have to occupy states with larger momenta,as illustrated in Fig. 3.2. Therefore
the electron pressure increases with density, as expressedby eq. (3.37).

If the electron density is increased further, at some point the velocity of the most energetic elec-
trons, pF/me, approaches the speed of light. We then have to replacev = p/m by the relativistic
kinematics relation (3.12). In theextremely relativisticlimit when the majority of electrons move at
relativistic speeds, we can takev = c and

Pe =
1
3

∫ pF

0

8πcp3

h3
dp=

8πc

12h3
p4

F =
hc
8

(3
π

)1/3
ne

4/3, (3.38)

which gives

Pe = KER

(

ρ

µe

)4/3

(3.39)

with KER =
hc
8 (3/π)1/3m−4/3

u = 1.24× 1015 [cgs units]. In the ER limit the pressure still increases
with density, but with a smaller exponent (4

3 instead of53). The transition between the NR regime,
eq. (3.37), and the ER regime, eq. (3.39), is smooth and can beexpressed as a function ofx = pF/mec,
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see K&W Chapter 15. Roughly, the transition occurs at a density ρtr given by the conditionpF ≈ mec,
which can be expressed as

ρtr ≈ µe mu
8π
3

(

mec
h

)3

. (3.40)

The relation betweenPe andρ for a completely degenerate electron gas is shown in Fig. 3.3.

Partial degeneracy

Although the situation of complete degeneracy is only achieved atT = 0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when the temperature is sufficiently low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degeneracy parameterψ ≫ 0 in eq. (3.31). In
that case eqs. (3.37) and (3.39) can still be used to calculate the pressure to good approximation.

The transition between the classical ideal gas situation and a state of strong degeneracy occurs
smoothly, and is known aspartial degeneracy. To calculate the pressure the full expression eq. (3.31)
has to be used in the pressure integral, which becomes rathercomplicated. The integral then depends
onψ, and can be expressed as one of the so-calledFermi-Dirac integrals, see K&W Chapter 15 for
details (the other Fermi-Dirac integral relates to the internal energy densityU). The situation of
partial degeneracy corresponds toψ ∼ 0.

Whenψ ≪ 0 the classical description is recovered, i.e. eq. (3.31) becomes the Maxwell-Boltzmann
distribution. In that case 1/(e(p2/2mekT)−ψ + 1) = e−(p2/2mekT)+ψ and therefore

2

h3
eψ =

ne

(2πmekT)3/2
or ψ = ln

h3ne

2(2πmekT)3/2
.

This only holds forψ ≪ 0, but more generally it can be shown thatψ = ψ(ne/T2/3). We have to
consider (partial) degeneracy ifψ ∼> 0, i.e. if

ne ∼>
2(2πmekT)3/2

h3
. (3.41)

The limit of strong (almost complete) degeneracy is reachedwhenne is roughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become so high that the electrons become degenerate
and exert a (much) higher pressure than they would if they behaved classically. Since in the limit of
strong degeneracy the pressure no longer depends on the temperature, this degeneracy pressure can
hold the star up against gravity, regardless of the temperature. Therefore a degenerate star does not
have to be hot to be in hydrostatic equilibrium, and it can remain in this state forever even when it
cools down. This is the situation inwhite dwarfs.

The importance of relativity is that, when a degenerate starbecomes more compact and the density
increases further, the pressure increases less steeply with density. This has important consequences
for massive white dwarfs, and we shall see that it implies that there is a maximum mass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very) important in stars, degeneracy of theions
is not. Since the ions have masses∼> 2000 larger than electrons, their momenta (p =

√
2mǫ) are much

larger at energy equipartition, and the condition (3.41) above (with me replaced bymion) implies
that much higher densities are required at a particular temperature. In practice this never occurs:
before such densities are reached the protons in the atomic nuclei will capture free electrons, and
the composition becomes one of (mostly) neutrons. Degeneracy of neutronsdoes become important
when we consider neutron stars.
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3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particles that carry momentum and therefore exert
pressure when they interact with matter. In particular photons arebosonswith gs = 2 (two polarization
states), so they can be described by the Bose-Einstein statistics, eq. (3.29). The number of photons is
not conserved, they can be destroyed and created until thermodynamic equilibrium is achieved. This
means thatµ = 0 in eq. (3.29) and hence

n(p)dp=
2
h3

1

eǫp/kT − 1
4πp2dp (3.42)

Photons are completely relativistic withǫp = pc= hν, so in terms of frequencyν their distribution in
LTE becomes thePlanck functionfor blackbody radiation:

n(ν)dν =
8π

c3

ν2dν

ehν/kT − 1
(3.43)

Applying eqs. (3.4) and (3.5) one can show that the photon number density and the energy density of
radiation are

nph =

∫ ∞

0
n(p) dp= b T3 (3.44)

Urad =

∫ ∞

0
pc n(p) dp = a T4 (3.45)

whereb = 20.3 cm−3 K−3 anda is the radiation constant

a =
8π5k4

15h3c3
= 7.56× 10−15 erg cm−3 K−4.

Since photons are always extremely relativistic,P = 1
3U by eq. (3.14) and theradiation pressureis

given by

Prad =
1
3aT4 (3.46)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure and radiation pressure,

P = Prad+ Pgas= Prad+ Pion + Pe.

wherePrad is given by eq. (3.46) andPion by eq. (3.19). In generalPe must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3.21), and in the limits of non-relativistic and
extremely relativistic degeneracy by eqs. (3.37) and (3.39), respectively. If the electrons are non-
degenerate then the pressure can be written as

P = 1
3aT4 +

R
µ
ρT.

If the electrons are strongly degenerate their pressure dominates over that of the (classical) ions, so in
that casePion can be neglected in the total pressure.

The fraction of the pressure contributed by the gas is customarily expressed asβ, i.e.

Pgas= βP and Prad = (1− β) P. (3.47)
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3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dominate the equation of state at different
temperatures and densities. In Fig. 3.4 the boundaries between these regimes are plotted schematically
in the logT, logρ plane.

• The boundary between regions where radiation and ideal-gaspressure dominate is defined by
Prad = Pgas, giving T/ρ1/3 = 3.2 × 107µ−1/3 whenT andρ are expressed in cgs units. (Verify
this by comparing eqs. 3.23 and 3.46.) This is a line with slope 1

3 in the logT vs logρ plane.

• Similarly, the boundary between the regions dominated by ideal-gas pressure and non-relativistic
degenerate electron pressure can be defined byPgas,ideal = Pe,NR as given by eq. (3.37), giving
T/ρ2/3 = 1.21× 105µ µ−5/3

e (again withT andρ in cgs units). This is a line with slope23 in the
logT-logρ plane.

• The approximate boundary between non-relativistic and relativistic degeneracy is given by
eq. (3.40),ρ = 9.7× 105µe g/cm3.

• At high densities the boundary between ideal gas pressure and extremely relativistic degeneracy
is found by equating eqs. (3.23) and (3.39), givingT/ρ1/3 = 1.50× 107µ µ−4/3

e (with T andρ in
cgs units), again a line with slope13.

As shown in Fig. 3.4, detailed models of zero-age (that is, homogeneous) main-sequence stars with
masses between 0.1 and 100M⊙ cover the region where ideal-gas pressure dominates the equation
of state. This justifies the assumptions made in Ch. 2 when discussing the virial theorem and its
consequences for stars, and when estimating temperatures in the stellar interior.
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Figure 3.4. The equation of state for a gas of free particles in the logT, logρ plane. The dashed lines are
approximate boundaries between regions where radiation pressure, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeneracy dominate, for a compositionX = 0.7 andZ = 0.02.
In the right panel, detailed structure models for homogeneous main-sequence stars of 0.1...100M⊙ have been
added (solid lines). The 1M⊙ model is well within the ideal-gas region of the equation of state. In the 0.1M⊙
star electron degeneracy pressure is important, except in the outer layers (at lowρ andT). In stars more massive
than 10M⊙, radiation pressure becomes important, and it dominates inthe surface layers of the 100M⊙ model.
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3.4 Adiabatic processes

It is often important to consider processes that occur on such a short (e.g. hydrodynamical) timescale
that there is no heat exchange with the environment; such processes areadiabatic. To derive the
properties of stellar interiors under adiabatic conditions we need several thermodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst lawof thermodynamics (see Sec. 2.4) states that the amount of heat absorbed by a system
is the sum of the change in its internal energy and the work done on the system. Thesecond lawof
thermodynamics states that, for a reversible process, the change in entropy equals the change in the
heat content divided by the temperature. Entropy is a state variable, unlike the heat content. For a
unit mass (1 gram) of matter the combination of these laws canbe expressed as

dq= T ds= du+ P dv= du− P

ρ2
dρ. (3.48)

Heredq is the change in heat content,du is the change in internal energy (u = U/ρ is thespecific
internal energy, i.e. per gram),s is the specific entropy (i.e. the entropy per unit mass) andv = 1/ρ is
the volume of a unit mass. Note thatdu anddsare exact differentials, whereasdq is not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabatic derivatives it is useful to write the equation of
state in differential form, i.e.

dP
P
= χT

dT
T
+ χρ

dρ
ρ
, (3.49)

whereχT andχρ are defined as

χT =

(

∂ log P
∂ logT

)

ρ,Xi

=
T
P

(

∂P
∂T

)

ρ,Xi

, (3.50)

χρ =

(

∂ logP
∂ logρ

)

T,Xi

=
ρ

P

(

∂P
∂ρ

)

T,Xi

. (3.51)

The subscriptXi means that the composition is held constant as well. In a general equation of state
χT andχρ can depend onT andρ themselves, but if they are (approximately) constant then we can
write the equation of state in power-law form:

P = P0 ρ
χρ TχT .

For example, for an ideal gas without radiation we haveχT = χρ = 1, while for a radiation-dominated
gasχT = 4 andχρ = 0.

3.4.1 Specific heats

The specific heats at constant volumecV and at constant pressurecP for a unit mass of gas follow
from eq. (3.48):

cV =

(

dq
dT

)

v
=

(

∂u
∂T

)

v
, (3.52)

cP =

(

dq
dT

)

P
=

(

∂u
∂T

)

P
− P

ρ2

(

∂ρ

∂T

)

P
, (3.53)
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where a partial derivative taken at constantv is the same as one taken at constantρ. For an ideal gas,
with u = U/ρ = 3

2P/ρ, we obtain from eq. (3.23) the familiar resultcV =
3
2R/µ. For a radiation-

dominated gas, eq. (3.45) yieldscV = 4aT3/ρ. Using thermodynamic transformations and some
algebraic manipulation (see Appendix), it follows quite generally that the specific heats are related by

cP − cV =
P
ρT

χT
2

χρ
. (3.54)

For an ideal gas this amounts tocP − cV = R/µ, and thereforecP =
5
2R/µ. For a radiation-dominated

gasχρ = 0 and hencecP→∞: indeed, sincePrad only depends onT, a change in temperature cannot
be performed at constant pressure.

The ratio of specific heats is often denoted asγ:

γ =
cP

cV
= 1+

P
ρTcV

χT
2

χρ
, (3.55)

so thatγ = 5
3 for an ideal gas.

3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic changesis measured by the so-calledadiabatic
derivatives. Two of these have special importance for stellar structure:

• Theadiabatic exponent2 γad measures the response of the pressure to adiabatic compression or
expansion, i.e. to a change in the density. It is defined as

γad =

(

∂ logP
∂ logρ

)

ad
(3.56)

where the subscript ’ad’ means that the change is performed adiabatically, that is, at constant
entropy. Ifγad is constant thenP ∝ ργad for adiabatic changes. As we shall see later,γad is
related to thedynamical stabilityof stars.

• Theadiabatic temperature gradientis defined as

∇ad =

(

∂ logT
∂ logP

)

ad
(3.57)

It is in fact another exponent that describes the behaviour of the temperature under adiabatic
compression or expansion (T ∝ P∇ad if ∇ad is constant), which turns out to be important for
stability againstconvection.

2In many textbooks one finds instead the adiabatic exponentsΓ1, Γ2, andΓ3 introduced by Chandrasekhar. They are
defined, and related toγad and∇ad, as follows:

Γ1 =

(

∂ log P
∂ logρ

)

ad
= γad,

Γ2

Γ2 − 1
=

(

∂ log P
∂ logT

)

ad
=

1
∇ad

, Γ3 =

(

∂ logT
∂ logρ

)

ad
+ 1.

They obey the relation

Γ1

Γ3 − 1
=
Γ2

Γ2 − 1
.
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The adiabatic exponent For an adiabatic processdq= 0 in eq. (3.48) and therefore

du=
P

ρ2
dρ. (3.58)

We have seen in Sect. 3.3.1 that for a perfect gas of free particles the internal energy densityU is
proportional toP, in both the NR and ER limits. For such a simple system we can therefore write, as
we did in Sect. 2.3,

u = φ
P
ρ

(3.59)

with φ a constant (between32 and 3). If we differentiate this and substitute into eq. (3.58) we obtain
for an adiabatic change

dP
P
=
φ + 1
φ

dρ
ρ
. (3.60)

Therefore, according to the definition ofγad (eq. 3.56),

γad =
φ + 1
φ

(for a simple, perfect gas). (3.61)

• for non-relativisticparticles (e.g. a classical ideal gas, NR degenerate electrons)φ = 3
2 and

thereforeγad =
5
3

• for extremely relativisticparticles (e.g. photons, ER degenerate electrons)φ = 3 and therefore
γad =

4
3

• for a mixture of gas and radiation (0≤ β ≤ 1) and/or moderately relativistic degenerate elec-
trons, 4

3 ≤ γad ≤ 5
3

For a general equation of state, described by eq. (3.49), onecan derive (see Appendix)

γad = χρ +
P

ρTcV
χT

2. (3.62)

Thereforeγad is related to the ratio of specific heats (eq. 3.55),γad = γ χρ. Theγ’s are equal ifχρ = 1
(as in the case of an ideal gas).

The adiabatic temperature gradient By writing eq. (3.56) asdP/P = γaddρ/ρ for an adiabatic
change, and eliminatingdρ with the help of eq. (3.49), we obtain a general relation between the
adiabatic temperature gradient∇ad and the adiabatic exponentγad:

∇ad =
γad− χρ
γadχT

, (3.63)

This gives the following limiting cases:

• for an ideal gas without radiation (β = 1) we haveχT = χρ = 1, which together withγad =
5
3

gives∇ad =
2
5 = 0.4.

• for a radiation-dominated gas (β = 0) χT = 4 andχρ = 0 so that∇ad =
1
4 = 0.25.
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For a general equation of state one has to consider the general expression forγad (eq. 3.62) in
eq. (3.63). One can also derive the following relation for∇ad (see Appendix):

∇ad =
P

ρTcP

χT

χρ
. (3.64)

We give some important results without derivations, which can be found in K&W Chapters 13.2 and
16.3 or in H Chapter 3.7:

• for a mixture of gas and radiation with 0< β < 1, ∇ad andγad both depend onβ and take on
intermediate values, i.e. 0.25< ∇ad < 0.4.

• for a non-relativistic degenerate gas, we have to consider that although electrons dominate the
pressure, there is a (tiny) temperature dependence due to the ion gas which must be taken into
account in calculatingχT and therefore∇ad. After some manipulation it can be shown that in
this case∇ad = 0.4, as for the ideal classical gas.

• for an extremely relativistic degenerate gas one also has toconsider that while the electrons are
relativistic, the ions are still non-relativistic. It turns out that in this limit∇ad = 0.5.

3.5 Ionization

We have so far implicitly assumed complete ionization of thegas, i.e. that it consists of bare atomic
nuclei and free electrons. This is a good approximation in hot stellar interiors, whereT > 106 K
so that typical energieskT are much larger than the energy needed to ionize an atom, i.e.to knock
off a bound electron. In the cooler outer layers of a star, however, we need to consider thepartial
ionizationof the elements. In this case quasi-static changes of the state variables (ρ andT) will lead
to changes in the degree of ionization. This can have a large effect on the thermodynamic properties
of the gas, e.g. onγad and∇ad.

In LTE the number densities of ionized and neutral species are determined by theSaha equation

nr+1

nr
ne =

ur+1

ur

2(2πmekT)3/2

h3
e−χr/kT (3.65)

wherenr andnr+1 indicate the number densities ofr andr+1 times ionized nuclei,χr is the ionization
potential, i.e. the energy required to remove ther-th bound electron, andur andur+1 are the partition
functions. The partition functions depend onT but can in most cases be approximated by the statistical
weights of the ground states of the bound species. (This equation can be derived from statistical
mechanics, e.g. see K&W Chapter 14.1.)

3.5.1 Ionization of hydrogen

As an example, we consider the simple case where the gas consists only of hydrogen. Then there
are just three types of particle, electrons and neutral and ionized hydrogen, withuH = u0 = 2 and
uH+ = u1 = 1. We write their number densities asn+ andn0 so that

n+
n0

ne =
(2πmekT)3/2

h3
e−χH/kT (3.66)

whereχH = 13.6 eV. The gas pressure is given byPgas = (n0 + n+ + ne) kT and the density is
ρ = (n0 + n+) mu. Thedegree of ionizationis defined as

x =
n+

n0 + n+
(3.67)
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Figure 3.5. The adiabatic temperature gradient∇ad plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hydrogen gas, for three values of the density (10−4,
10−6 and 10−8 g/cm3). When hydrogen is partially ionized,∇ad is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of ionization x = 0.5, close to the minimum of∇ad. As the
density increases, a higher temperature is needed to reach the same ionization degree. The right panel shows
how∇ad varies with temperature in a detailed stellar model of 1M⊙, between the surface (atT ≈ 6000 K) and
the centre (atT ≈ 1.5× 107 K). Apart from the hydrogen ionization zone around 104 K, a second depression
of ∇ad around 105 K is seen which is due to the first4He ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar temperatures and densities. Note that the region where
T < 106 K comprises only the outer 1 % of the mass of the Sun. (The dotted line shows how∇ad would vary
with T in this model if the composition were pure hydrogen, as was assumed in the left panel.)

so thatPgascan be written in terms of the degree of ionization

Pgas= (1+ x)RρT (3.68)

We can then rewrite Saha’s equation as

x2

1− x2
=

(2πme)3/2

h3

(kT)5/2

Pgas
e−χH/kT (3.69)

We see that the degree of ionization increases withT, as expected since more atoms are broken up by
the energetic photons. However,x decreases with gas pressure (or density) whenT is kept constant,
because this increases the probability of recombination which is proportional tone. From eq. (3.68)
we see that the mean molecular weightµ = 1/(1 + x) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate the effect on the thermodynamic properties of the gas, we note that in the case of par-
tial ionization the internal energy has a contribution fromthe available potential energy of recombina-
tion. Per unit volume this contribution is equal ton+ χH, so per unit mass it equalsn+ χH/ρ = xχH/mu.
Thus

u =
3
2

Pgas

ρ
+ x

χH

mu
= 3

2(1+ x)RT + x
χH

mu
. (3.70)

A small increase in temperature increases the degree of ionization, which results in a large amount of
energy being absorbed by the gas. In other words, thespecific heatof a partially ionized gas will be
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much larger than for an unionized gas, or for a completely ionized gas (in the latter casex = 1 so that
the second term in eq. (3.70) becomes a constant and therefore irrelevant).

Now consider what happens if the gas is adiabatically compressed. Starting from neutral hydro-
gen, for which∇ad = 0.4, the temperature initially increases asT ∝ P0.4. Further compression (work
done on the gas) increasesu, but when partial ionization sets in most of this energy goesinto raising
the degree of ionization (second term of eq. 3.70) and only little into raising the temperature (first
term). In other words,T increases less strongly with withP, and therefore∇ad < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that under typical conditions∇ad reaches a minimum
value of≈ 0.1 whenx ≈ 0.5. As the gas becomes almost fully ionized,∇ad rises back to 0.4. The
variation of∇ad with temperature for a pure hydrogen gas is shown in the left panel of Fig. 3.5 for
different values of the density.

The decrease of∇ad in partial ionization zones can induceconvectionin the outer layers of stars,
as we shall see in Ch. 4. Similarly it can be shown thatγad decreases in partial ionization zones, from
5
3 to γad ≈ 1.2 whenx ≈ 0.5. This has consequences for the stability of stars, as we shall also see.

3.5.2 Ionization of a mixture of gases

In a mixture of gases the situation becomes more complicatedbecause many, partly ionized species
have to be considered, the densities of which all depend on each other (see e.g. K&W Chapter 14.4-
14.5). However the basic physics remains the same as considered above for the simple case of pure
hydrogen. The effect on the thermodynamic properties is that e.g.∇ad can show additional deviations
below 0.4 at different temperatures, especially where helium (the second-most abundant element in
stars) is partially ionized. This is illustrated in Fig. 3.5b which shows the variation of∇ad with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As ρ increases indefinitely, the Saha equation givesx→ 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becomesincorrect when the average distance
between ions becomes less than an atomic radius. In this situation the ionization energy is suppressed
(there are fewer bound excited states; see Fig. 3.5.3), a situation known aspressure ionization.

Consider the case of hydrogen: the volume per H atom is 1/nH so that〈d〉 = (4π
3 nH)−1/3. Pressure

ionization sets in when〈d〉 ∼< a0 = 5× 10−9 cm (the Bohr radius). This implies

nH ∼>
1

4π
3 a0

3

or ρ = nHmH ∼> 3 g cm−3. Other elements are pressure-ionized at similar values of the density, within
an order of magnitude. At densities∼> 10 g cm−3, therefore, we can again assume complete ionization.

Figure 3.6. Schematic depiction of
the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from K & W.
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Figure 3.7. The equation of state in the
ρ, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
in Fig. 3.4, between regions where ra-
diation, ideal gas and degenerate elec-
trons dominate the pressure. The solid
line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
equation, and where hydrogen becomes
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dashed lines show where the Coulomb
interaction parameterΓC equals 1, above
which Coulomb interactions become im-
portant, and whereΓC = 170, above
which the ions form a crystralline lat-
tice. Above the dash-dotted line e+e−

pairs play an important role in stellar in-
teriors.

Fig. 3.7 shows the approximate boundary in the density-temperature diagram between neutral and
ionized hydrogen according the Saha equation forρ < 1 g cm−3, and as a result of pressure ionization
at higher densities.

3.6 Other effects on the equation of state

3.6.1 Coulomb interactions and crystallization

In Sect. 3.2.1 we showed that Coulomb interactions normallyhave very small energies compared to
the kinetic energies of the ions and electrons. The ratio of Coulomb energy to kinetic energy is usually
called the Coulomb parameterΓC, defined as in eq. (3.2):

ΓC =
Z2e2

d kT
=

Z2e2

kT

(

4πρ
3Amu

)1/3

= 2.275× 105 Z2

A1/3

ρ1/3

T
, (3.71)

where in the last equality the numerical factor is in cgs units. Coulomb interactions start to become
important in stellar interiors whenΓC ∼> 1. In Fig. 3.7 the location of the conditionΓC = 1 is
indicated in theρ-T diagram. Comparing with Fig. 3.4 shows that the effect of Coulomb interactions
is significant in very low-mass stars.

If ΓC ≫ 1 the thermal motions of the ions are overwhelmed by the Coulomb interactions. In
this situation the ions will tend to settle down into a conglomerate with a lower energy, in other
words they will form a crystalline lattice. Detailed estimates indicate that this transition takes place
at a critical value ofΓC ≈ 170. This condition is also indicated in Fig. 3.4 for a pure hydrogen
gas. In reality, this situation will never occur in hydrogen-rich stellar interiors, but it can take place
in cooling white dwarfs (in which the temperature graduallydecreases with time while the density
remains constant). White dwarfs are usually composed of carbon and oxygen, so in this case we have
to take into account the composition which raises the temperature at which the transition occurs (the
‘melting’ temperature) by a factorZ2/A1/3 according to eq. (3.71).
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Finally we note that crystallization only occurs in the region where the electrons are strongly
degenerate. You may verify that the Coulomb interaction energy between electrons and ions (Ze2/d)
is always smaller than the typical electron energy (p2

F/2me). The electrons therefore behave like a
free degenerate gas, even if the ions form a crystalline structure.

3.6.2 Pair production

A very different process can take place at very high temperatures and relatively low densities. A
photon may turn into an electron-positron pair if its energyhν exceeds the rest-mass energy of the pair,
hν > 2mec2. This must take place during the interaction with a nucleus,since otherwise momentum
and energy cannot both be conserved. Pair production takes place at a typical temperaturekT ≈ hν ≈
2mec2, or T ≈ 1.2×1010 K. However, even atT ∼ 109 K the number of energetic photons in the tail of
the Planck distribution (eq. 3.43) is large enough to produce a large number of e+e− pairs. The newly
created positrons tend to be annihilated quickly by the inverse reaction (e+ + e− → γ), as a result of
which the number of positrons reaches equilibrium. At a few times 109 K, depending on the electron
density, the number of positrons is a significant fraction ofthe number of electrons.

Pair production is similar to an ionization process: an increase in temperature leads to an increase
in the number of particles at the expense of the photon energy(and pressure). Therefore pair produc-
tion gives rise to a decrease of the adiabatic gradientγad and of∇ad, similar to partial ionization. This
is the main importance of pair production for stellar evolution: it affects the stability of very massive
stars in advanced stages of evolution (when their temperature may reach values in excess of 109 K)
and can trigger their collapse.

Suggestion for further reading

The contents of this chapter are also covered by Chapters 13 to 16 of K & W. How-
ever, a more elegant derivation of the equation of state, which is also more consistent with the way it is
derived in these lecture notes, is given in Chapter 3 of H, K & T (Stellar Interiors,
Springer-Verlag, 2004). Explicit expressions for many of the results that are only mentioned here can
be found in this book.
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