

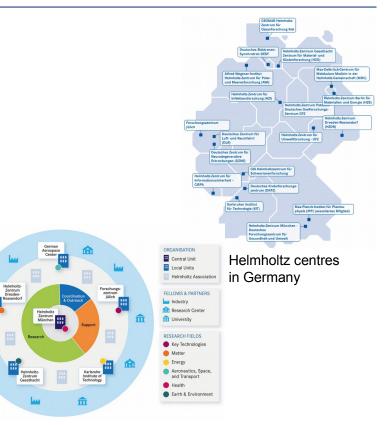
RESEARCH FOR GRAND CHALLENGES

HELMHOLTZ FEDERATED IT SERVICES

HIFIS backbone transfer service: FTS for everyone

<u>Tim Wetzel</u>¹, Paul Millar¹, Uwe Jandt¹, Patrick Fuhrmann¹, Stefan Helmert², Tobias Huste², Guido Juckeland²

¹Deutsches Elektronen-Synchrotron DESY, ²Helmholtz-Zentrum Dresden-Rossendorf HZDR

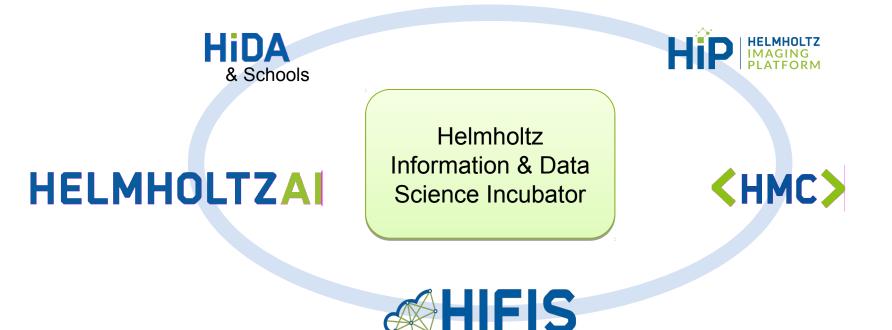

HIFIS-Meeting, 22 October 2020



HIFIS 2020

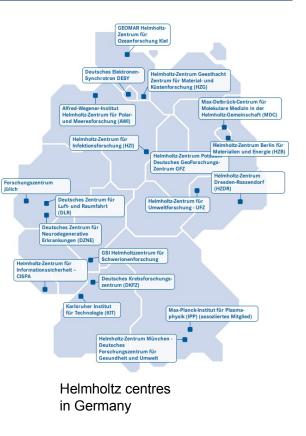
Why data transfers?

- Helmholtz centres distributed all over Germany
- Large data sets in collaborative research projects
- Policy-driven data transfers required
- Data analysis often sensitive to latency
- Data locality is important!
- Part of HIFIS backbone contract
- Reliable, comfortable and robust transfer methods needed


m

Introduction

Platforms for interdisciplinary science projects.


9

Use cases

- Data transfers of large data sets
- For collaborative projects in e.g. HelmholtzAI, HIP
- Asynchronous one-time transfers
- Policy implementation for synchronization of perpetually renewed data sets

Introduction of easy to deploy Apache endpoint

HIFIS 2020

Transfer services

- As HIFIS backbone core service
- CERN's FTS3 as backend
- webFTS as comfortable WebUI
- FTS3-REST-API as CLI for automated transfers
- Later: **Rucio** for policy driven transfers

Client applications for all needs and purposes

HIFIS 2020

WLCG storage Endpoints

- storage solutions in WLCG:
 - ✓ dCache
 - EOS
 - ✓ DPM
 - StoRM
- Developed for constant high load and huge data volumes
- Enclosed view on data
- More open endpoint solution needed for HIFIS

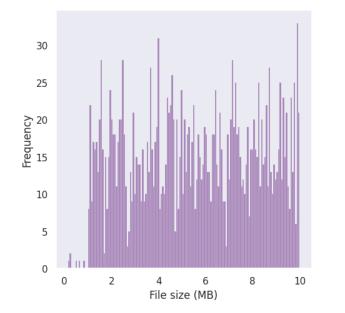
- WLCG development for data transfers
 - Extension of the HTTP protocol
 - Third party can commission transfers between source and destination
 - Data is transferred **directly** between endpoints w/o third party
 - One endpoint needs to understand TPC-COPY extension (active party, WLCG)
 - The other endpoint needs to enable PUT or GET requests for files (passive party)
- Asynchronous data transfers possible
- Not implemented in standard Apache httpd
- → dCache needed as active party

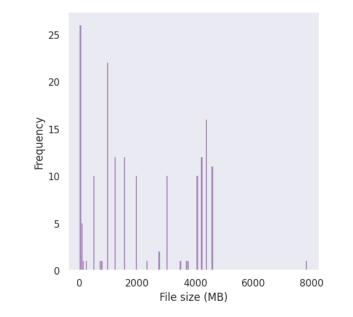
Endpoint components

- Apache httpd webserver modules used:
 - / mod_ssl (SSL/TLS capabilities)
 - mod_dav (webDAV capabilities)
 - mod_auth_openidc (OpenIDConnect/OAuth2)
 - modified mpm_itk (Multiprocessing module, user mapping)
 - self-written lua script (local user mapping)
 - self-written mod_want_digest (instance digests following RFC 3230)
- Compatible with FTS3 and accessible via OAuth2 secured webDAV
- Transfers are possible between WLCG storage and Apache EPs
- Direct transfers between two Apaches are WIP

- mod_want_digest (github.com/wetzel-desy/mod_want_digest):
 - Developed by Tim Wetzel and Paul Millar, fragments taken from httpd's mod_negotiation
 - Implements instance digests in accordance with RFC 3230 (HTTP headers "Want-Digest" and "Digest")
 - Supports ADLER32, MD5 and SHA digests
 - Alpha version until now
 - * No digest caching mechanism or on-the-fly calculation
 - Has to read file from disk for digest calculation
- Good first version but needs to be optimized (WIP)

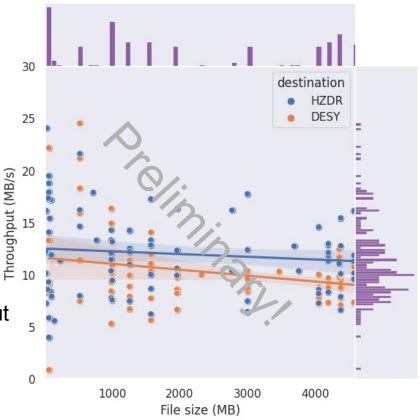
Transfer tests


- Endpoints:
 - DCache @ DESY as active party
 - Apache @ HZDR Dresden (OAuth2-secured webDAV EP) & @ DESY (+ local user mapping and instance digests) as passive parties
- → 2344 successful transfers over 3 days, manually initiated via WebFTS
- → 363.9 GB of data in total
- Failed transfers only due to either exceeding disk space or initial misconfigurations of httpd excluded from the results, which could be fixed easily



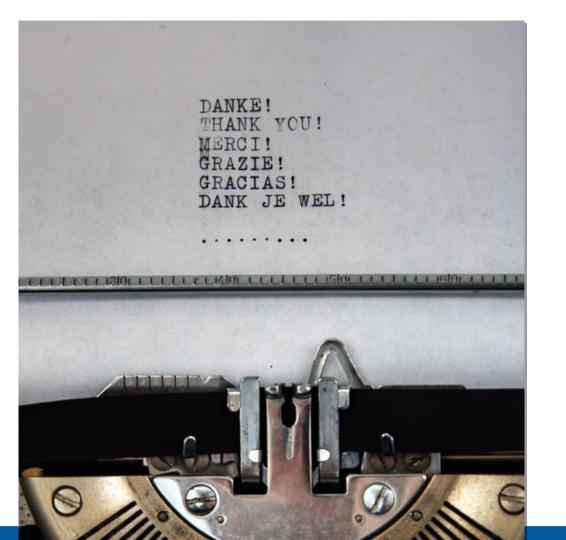
Transfer tests

- Total transferred volume: ~363.9 GB in ~2300 files over 3 days
- 2166 < 10 MB, 167 > 10 MB



Transfer tests

- Mean throughput
 - 3.64 MB/s (<10 MB)
 - 11.2 MB/s (>10 MB)
- Standard deviation
 - 2.66 MB/s (<10 MB)
 - 3.83 MB/s (>10 MB)
- DESY instance provides lower throughput because of instance digest calculations


- Investigate causes for low throughput (by all means possible)
- Integrate with HelmholtzAAI (currently not possible due to bug in unity, will be solved)
- Investigate implementation of true HTTP-TPC capabilities for Apache httpd (with KIT)
- Optimize overall setup
- Provide different packaging options (Docker, Kubernetes, OpenStack, Ansible...)
- Further testing and assessment of performance and ease of use

- Enabling data transfers between HGF centres with existing open-source software
- New software configuration for HTTP-TPC that is easy to deploy
- Together with FTS3 and WebFTS provides base for a transfer service
- Transfer tests between Apache endpoints and dCache instance successful
- Instance digest calculation and throughput still present considerable possibilities for optimization
- Currently limited to transfers involving grid storage endpoint (e.g., dCache), but future work will make Apache httpd itself capable of HTTP-TPC
- Practical solution for data transfers between Helmholtz centres

tim.wetzel@desy.de
www.hifis.net

Grateful acknowledgements:

Andrea Manzi, EGI Mihai Patrascoiu, CERN