

Determining neutron-induced reaction cross sections through surrogate reactions at storage rings

Jacobus A. Swartz

LP2I Bordeaux (formerly CENBG)

12 January 2022

Schools on Nuclear Astrophysics Questions

The NECTAR project - determine neutron-induced reaction cross sections

• Focus on short-lived nuclei, of interest to:

- Nuclear astrophysics
- Applications (e.g. nuclear energy, medicine)

Nuclear astrophysics

Nuclear energy

→ One way: a neutron beam on a radioactive target:

→ One way: a neutron beam on a radioactive target:

→ An alternative approach

7 P_{f} key information to Fix parameters which

Surrogate reaction \mathcal{C} Formation X Y n (A+1)* **Compound nucleus** (A+1)* Neutron emission Fission **Decay probabilities** provide P_n Decay 2NNNN m constrain cross sections of y-ray emission $P_{f} + P_{v} + P_{n} = 1$ neutron-induced reactions. P_{γ}

\rightarrow An alternative approach

Experiments at storage rings of GSI/FAIR

Advantages:

13

- Excellent excitation energy resolution possible through low-density gas jet target and electron cooling.
- Frequency compensates for thin target.
- No target contaminants or window.
- > Challenge: UHV of the ring ($P \sim 10^{-11} 10^{-12}$ mbar)

NECTAR Proof-of-Principle (PoP) experiment – June 2022

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- ${}^{208}Pb(p,p'){}^{208}Pb^*$ reaction, measure ${}^{208}Pb^* \rightarrow {}^{208}Pb+\gamma$ (P_v) and ${}^{208}Pb^* \rightarrow {}^{207}Pb+n$ (P_n)

NECTAR Proof-of-Principle (PoP) experiment – June 2022

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- ${}^{208}Pb(p,p'){}^{208}Pb^*$ reaction, measure ${}^{208}Pb^* \rightarrow {}^{208}Pb+\gamma$ (P_v) and ${}^{208}Pb^* \rightarrow {}^{207}Pb+n$ (P_n)

NECTAR Proof-of-Principle (PoP) experiment – June 2022

- Beam of ²⁰⁸Pb at E_{beam} = 30 AMeV on ¹H gas jet target
- ${}^{208}Pb(p,p'){}^{208}Pb^*$ reaction, measure ${}^{208}Pb^* \rightarrow {}^{208}Pb+\gamma$ (P_v) and ${}^{208}Pb^* \rightarrow {}^{207}Pb+n$ (P_n)

17

Simulation results for PoP experiment

Simulations by M.Sguazzin

Outlook:

- NECTAR PoP experiment coming to ESR@GSI June 2022
- NECTAR experiments featuring fission detection ca. 2024

1st full experiment: ²³⁸U + d at E = 10 AMeV.

Outlook:

- NECTAR PoP experiment coming to ESR@GSI June 2022
- NECTAR experiments featuring fission detection ca. 2024

1st full experiment: ²³⁸U + d at E = 10 AMeV.

Solar cells

Outlook:

- NECTAR PoP experiment coming to ESR@GSI June 2022
- NECTAR experiments featuring fission detection ca. 2024
- Isotopic chains of interest:
- I, Pb, U, Th, Np etc.
- Multitude of short-lived nuclei
- Years and years of physics!

<u>Acknowledgement of support</u>

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715).

S. Grevy

T. Kurtukian

The NECTAR Collaboration

CENBG (Bordeaux)	MPIK Heidelberg	GSI/FAIR Darmstadt
B. Jurado (PI)	M. Grieser	J. Glorius
J. Pibernat (technical lead)	K. Blaum	Y. Litvinov
J.A. Swartz		
M. Sguazzin		
B. Thomas	CEA/DAM	University of Frankfurt
M. Roche	M. Dupuis L. Gaudefroy V. Méot O. Roig	R. Reifarth
P. Alfaurt		
J. Giovinazzo		
J. Michaud		
B. Blank		
M. Gerbaux		Thank you for listening! To be continued