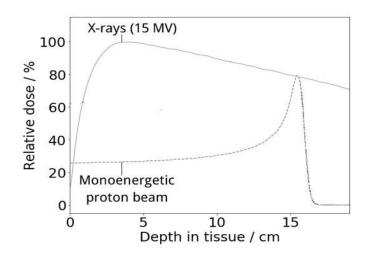


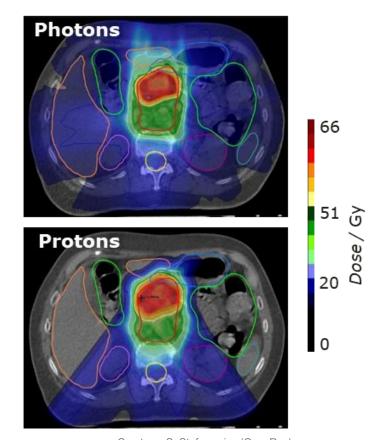
The next frontier in image guided proton therapy:

Developments towards in-beam Magnetic Resonance Imaging

Georgian-German Science Bridge | August 20th, 2025

Sergej Schneider - OncoRay - National Center for Radiation Research in Oncology




Dosimetric benefit of proton therapy

High dose conformality

- Proton therapy (PT) delivers highly conformal dose distributions with steep dose fall off after dose maximum (Bragg Peak)
 - + Reduces integral dose and enables improved healthy tissue sparing
 - Highly sensitive to setup inaccuracies and anatomy changes (organ motion and deformation)

Courtesy: S. Stefanowicz (OncoRay)

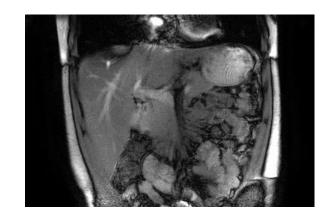
Dosimetric benefit of proton therapy not fully exploited

Problems: (1) we do not know exactly what we shoot at <u>and</u> (2) what we hit!

- We cannot accurately localize the target during dose delivery
- We cannot assess the beam range and control the beam in real time
- We currently lack the imaging tools to overcome these critical limitations

Proposed solution: <u>full integration</u> of proton therapy and MRI

Bring together exquisite soft-tissue imaging of MRI and superior dose conformity of PT


Full integration of MRI and proton therapy

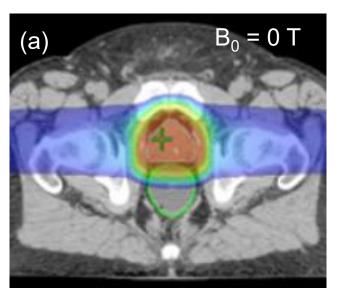
MRI provides:

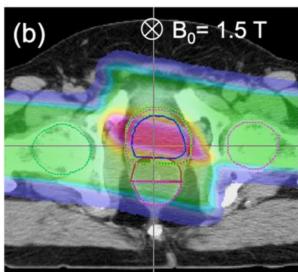
- ✓ Excellent soft-tissue contrast
- ✓ Real-time imaging capabilities
- ✓ No ionizing imaging dose
- ✓ Functional imaging

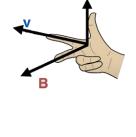
- → accurate organ delineation
- → captures organ motion
- → continuous imaging
- → response assessment

MR-integrated Proton Therapy (MRiPT): in-beam MRI-guided proton therapy

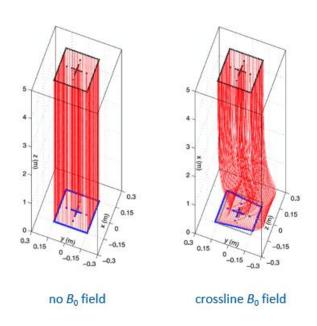
Synchronisation of tumor position and dose delivery increases the targeting precision

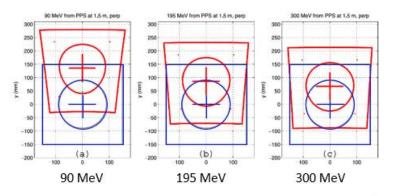





Proton dose delivery affected by magnetic field of MRI scanner:

Lorentz force induced deflection of proton beam significantly disturbs dose delivery



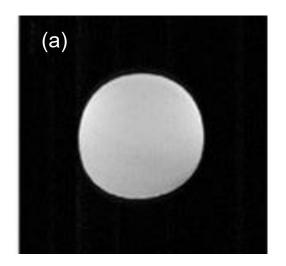


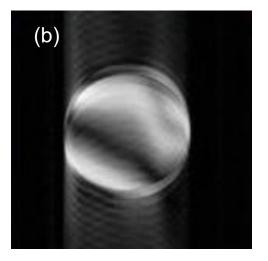
Dosimetric impact on beam trajectory and dose distribution

- Effect of magnetic field orientation and fringe fields: MC simulations in Geant4
 - **crossline** B_0 field \bot beam : energy-dependent proton beam **deflection** and radiation field shape **deformation**
 - inline B_0 field || beam : energy-dependent proton beam rotation around central beam axis

Oborn et al. Med Phys 2015

Electromagnetic environment in proton therapy facility unfavorable for MRI

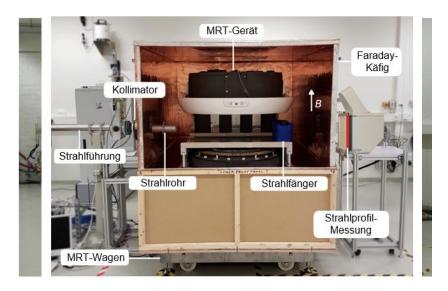




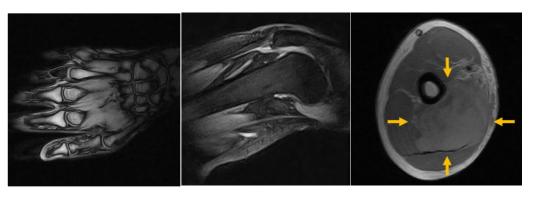
Electromagnetic environment in proton therapy facility unfavorable for MRI

Proton therapy facility can distort imaging capability of MRI scanner

(a) Undistorted and (b) distorted MRI image of homogeneous phantom



1st prototype in Dresden: proof-of-concept during static proton beam delivery

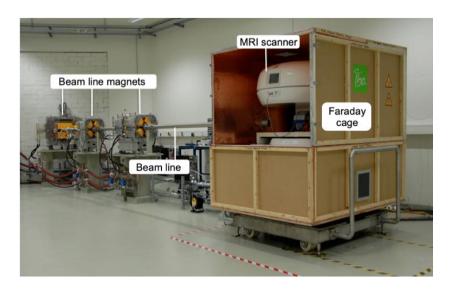


- 0.22 T open in-beam MRI at horizontal <u>static</u> research beam line
 - ✓ MR image quality sufficient for tumor delineation.
 - ✓ MR image quality preservation during simultaneous proton beam irradiation

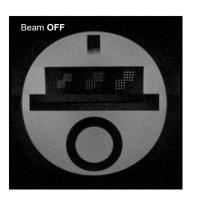
Schellhammer et al. Phys Med Biol 2018; 63(23)

In-beam MRI scanner at horizontal fixed beam line

Anatomical images of healthy volunteer and patient with soft tissue sarcoma



1st prototype in Dresden: proof-of-concept during static proton beam delivery

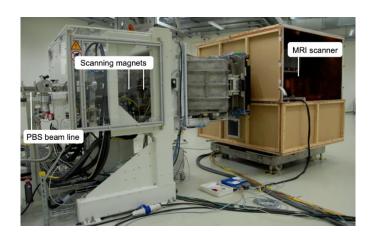


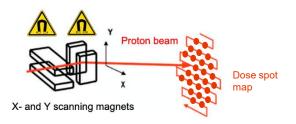
- 0.22 T open in-beam MRI at horizontal <u>static</u> research beam line
 - ✓ MR image quality sufficient for tumor delineation
 - ✓ MR image quality preservation during simultaneous proton beam irradiation

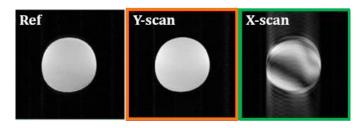
Schellhammer et al. Phys Med Biol 2018; 63(23)

In-beam MRI scanner at horizontal fixed beam line

MR image quality of centrally irradiated phantom (ø 10 cm) does not degrade when beam (ø 2 cm) is ON




1st prototype in Dresden: proof-of-concept during static proton beam delivery


- 0.22 T open in-beam MRI at horizontal PBS research beam line
 - Severe MR image ghosting artefacts occur during PBS delivery of equidistant proton dose spot

Gantz et al. Phys Med Biol 2020; 65(21)

In-beam MRI scanner at proton PBS beam line in Dresden

Transversal MR images of homogeneous cylindrical phantom

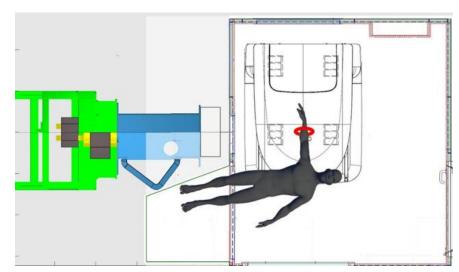


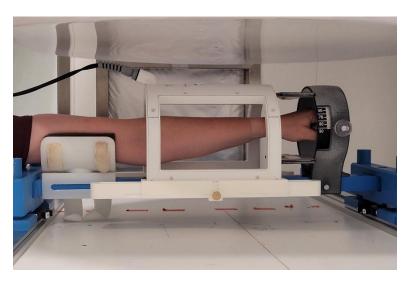
2nd prototype in Dresden: towards first-in-human MRiPT application

- 0.32 T open in-beam MRI at horizontal PBS research beam line
 - ✓ Installation and commissioning of MR scanner and Faraday cabin on mobile air-cushion platform completed
 - Developed dedicated positioning system and MRI receiver coil
 - Validation of workflow for first patient treatment with static target volume is ongoing

In-cage view of MR scanner

RF cabin with in-beam MR scanner on air-cushion transporter



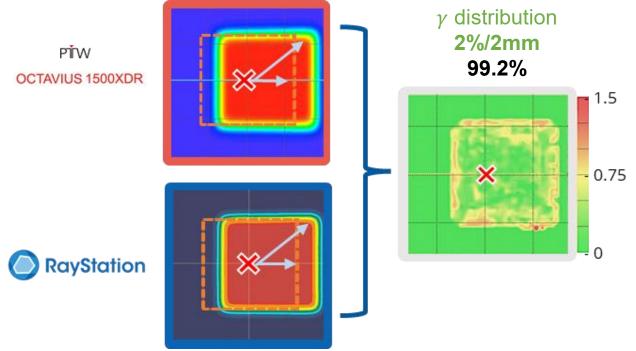


2nd prototype in Dresden: towards first-in-human MRiPT application

- 0.32 T open in-beam MRI at horizontal PBS research beam line
 - ✓ Installation and commissioning of MR scanner and Faraday cabin on mobile air-cushion platform completed
 - Developed dedicated positioning system and MRI receiver coil
 - Validation of workflow for first patient treatment with <u>static</u> target volume is ongoing

Schematic of patient positioning for soft tissue sarcoma

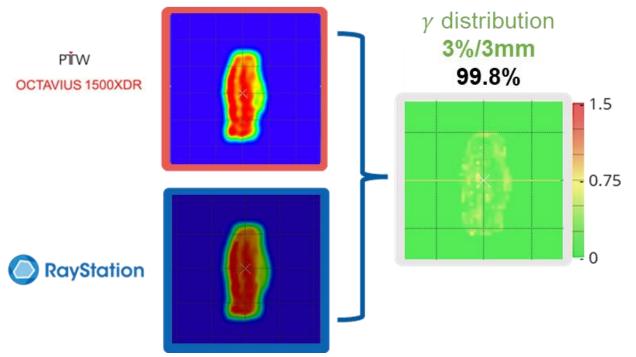
Arm in dedicated receiver oil and positioning system


Treatment planning for MRiPT

2nd prototype in Dresden: Treatment planning in magnetic fields using RayStation

 Dosimetric validation shows satisfactory compensation of magnetic field deflection in simulation and measurement

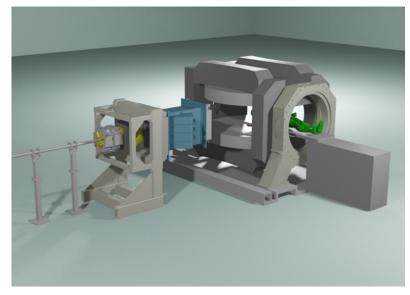
Courtesy: M. Cobanaj (OncoRay)


Treatment planning for MRiPT

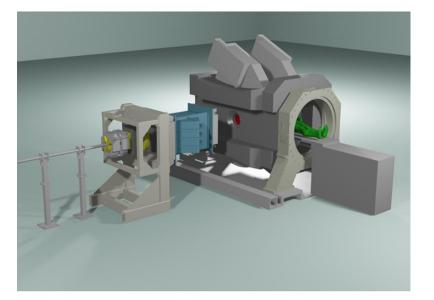
2nd prototype in Dresden: Treatment planning in magnetic fields using RayStation

 Dosimetric validation shows satisfactory compensation of magnetic field deflection in simulation and measurement

Courtesy: M. Cobanaj (OncoRay)



3rd prototype in Dresden: whole-body, real-time MRI and beam gating

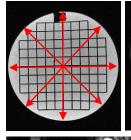

- 0.5 T whole-body bi-directional in-beam MRI at horizontal proton PBS research beam line
 - ✓ 2021: Development with industrial partners based on "Aurora-RT" LINAC-MR from Alberta group
 - ✓ 2023: Delivery and installation of MRI system at OncoRay completed

Horizontal magnets: beam perpendicular to B₀ field

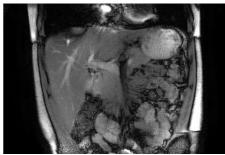
Vertical magnets: beam parallel to B₀ field

3rd prototype in Dresden: whole-body, real-time MRI and beam gating

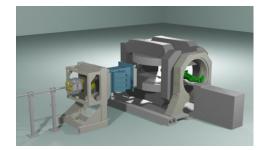
- 0.5 T whole-body bi-directional in-beam MRI at horizontal proton PBS research beam line
 - ✓ 2021: Development with industrial partners based on "Aurora-RT" LINAC-MR from Alberta group
 - ✓ 2023: Delivery and installation of MRI system at OncoRay completed

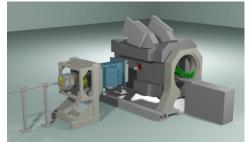


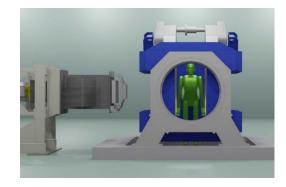




Research Questions


Image quality sufficient for target tracking?





Impact of magnetic field direction?

Upright MRiPT feasible and beneficial?

Roadmap to in-beam MRI guided proton therapy

MR-only based treatment planning

Treatment planning in presence of MR magnetic fields

MR-scanner integration with proton beamline

18

Acknowledgment

OncoRay - Dresden

- Aswin Hoffmann
- Esther Troost
- Jörg Pawelke
- Felix Horst
- Franciska Lebbink
- Egon Hübner
- Marisa Cobanaj
- Krishna Godino Padre
- Michael Schürer
- Gert Rothe
- Dominik Geißler
- Friederike Heinze

Uni Wien - Vienna

- Dietmar Georg
- Hermann Fuchs

Univ. Wollongong - Wollongong

Bradley Oborn

MagnetTx - Edmonton

- Mike Cogswell
- Brad Murray
- Ron Drake
- Robyn Murray

ASG - Genoa

- Leonardo Bertora
- Stefano Pittaluga
- Emanuele Barberis

