

Large Language Models from User-Interface to Transformers

— peeling the onion —

Peter Steinbach

Helmholtz-Zentrum Dresden-Rossendorf, Department for Information Services and Computing,

HZDR AI Symposium, September 9, 2025

Table of Contents

- 1 What you see
- 2 Software/Hardware Layer
- 3 A Large Language Mode
- 4 Instruction Tuning
- 5 Summary

Table of Contents

- 1 What you see
- 2 Software/Hardware Layer
- 3 A Large Language Mode
- 4 Instruction Tuning
- 5 Summary

A chatbot window on https://chat.fz-rossendorf.de

HELMHOLTZAI

A chatbot window: What happens?

A chatbot window: You send something!

HELMHOLTZA

Sending input: What happens?

When I click:

the string will be filtered, checked and submitted to a software on another computer.

This software forwards your string to a large language model (LLM).

The large language model at work!

A chatbot window: Your results!

HELMHOLTZ A

Receiving input: What happens?

The LLM returns a reply. The website software interprets it and shows it in your browser. The text appears formatted.

Table of Contents

- 1 What you see
- 2 Software/Hardware Layers
- 3 A Large Language Mode
- 4 Instruction Tuning
- 5 Summary

Chatting with a LLM: A view in boxes

Table of Contents

- 1 What you see
- 2 Software/Hardware Layer
- 3 A Large Language Model
- 4 Instruction Tuning
- 5 Summary

Figure 1 from Devlin et al. 2018

name:
 Bidirectional
 Encoder
 Representations from
 Transformers

Figure 1 from Devlin et al. 2018

- name: **B**idirectional Encoder Representations from **T**ransformers
- task: string sequence to sequence translation

Figure 1 from Devlin et al. 2018

- name:
 Bidirectional
 Encoder
 Representations from
 Transformers
- task: string sequence to sequence translation
- data: (unlabelled) text pairs

Figure 1 from Devlin et al. 2018

- name:
 Bidirectional
 Encoder
 Representations from
 Transformers
- task: string sequence to sequence translation
- data: (unlabelled) text pairs
- breakthrough:

Figure 1 from Devlin et al. 2018

- name: **B**idirectional Encoder Representations from **T**ransformers
- task: string sequence to sequence translation
- data: (unlabelled) text pairs
- breakthrough:

HELMHOLTZ AL

1 train once

Figure 1 from Devlin et al. 2018

- name: **B**idirectional Encoder Representations from **T**ransformers
- task: string sequence to sequence translation
- data: (unlabelled) text pairs
- breakthrough:
 - train once
 - finetune and use on many unrelated tasks

(MNLI, NER, SQuAD, ...)

Figure 1 from Radford, Narasimhan, et al. 2018

name:

Generative Pretrained Transformer

Figure 1 from Radford, Narasimhan, et al. 2018

- name:Generative Pretrained Transformer
- task: sequence to sequence decoding

HELMHOLTZ AL

Figure 1 from Radford, Narasimhan, et al. 2018

- name:Generative Pretrained Transformer
- task: sequence to sequence decoding
- data: heaps of text (www)

Figure 1 from Radford, Narasimhan, et al. 2018

- name:
 Generative Pretrained Transformer
- task: sequence to sequence decoding
- data: heaps of text (www)
- breakthrough:

Figure 1 from Radford, Narasimhan, et al. 2018

- name:
 Generative Pretrained Transformer
- task: sequence to sequence decoding
- data: heaps of text (www)
- breakthrough:
 - scalable

Figure 1 from Radford, Narasimhan, et al. 2018

- name:
 Generative Pretrained Transformer
- task: sequence to sequence decoding
- data: heaps of text (www)
- breakthrough:
 - scalable
 - 2 better quality than BERT Radford, Wu, et al. 2019

Figure 1 from Radford, Narasimhan, et al. 2018

- name:
 Generative Pretrained Transformer
- task: sequence to sequence decoding
- data: heaps of text (www)
- breakthrough:
 - scalable
 - 2 better quality than BERT Radford, Wu, et al. 2019
 - 3 science behind closed doors

What are transformers?

Self-Attention Mechanism as described in Prince 2023 under Creative Commons CC-BY-NC-ND

- force model to identify important words in a sequence (self-attention mechanism)
- easy to parallelize
 - discovered by Vaswani et al. 2017. "Attention is all you need"

HELMHOLTZ A

Scalability? Hoffmann et al. 2022

The bigger, the better!

(bigger models, more compute, more data result in better performance)

Table of Contents

- 1 What you se
- 2 Software/Hardware Layer
- 3 A Large Language Mode
- 4 Instruction Tuning
- 5 Summary

Instruction Tuning

Step 1

Collect demonstration data. and train a supervised policy.

A prompt is sampled from our prompt dataset.

This data is used to fine-tune GPT-3 with supervised learning.

Explain the moon

landing to a 6 year old

Step 2

Collect comparison data. and train a reward model.

A prompt and several model Explain the moon outputs are landing to a 6 year old sampled. Explain gravity. Explain war. 0 0 People went to to edificate A labeler ranks the outputs from best to worst. D > O > A = B This data is used to train our reward model. D > O > A = B

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset

The policy generates an output.

Once upon a time... The reward is

The reward model calculates a reward for the output.

used to update

the policy using PPO.

from 2024 openai blogpost
HELMHOLTZA

Write a story

about frogs

19/25

base models

- trained on completing large corpora of text (www)
- they can only do that: continue text
- too fragile to act in chats

base models

- trained on completing large corpora of text (www)
- they can only do that: continue text
- too fragile to act in chats

instruction-tuned models

- learn policy to reward LLM to reply like a human
- automate and interpolate human-conforming text

base models

- trained on completing large corpora of text (www)
- they can only do that: continue text
- too fragile to act in chats

instruction-tuned models

- learn policy to reward LLM to reply like a human
- automate and interpolate human-conforming text

base models

- trained on completing large corpora of text (www)
- they can only do that: continue text
- too fragile to act in chats

instruction-tuned models

- learn policy to reward LLM to reply like a human
- automate and interpolate human-conforming text

base models

- trained on completing large corpora of text (www)
- they can only do that: continue text
- too fragile to act in chats

instruction-tuned models

- learn policy to reward LLM to reply like a human
- automate and interpolate human-conforming text

Results taken from Philip Müller's master thesis (FWCC-A/HZDR, SCADS.AI/TUD)
"Uncertainty Estimation of Large Language Model Replies in Natural Sciences"

Advent of Chatbots and Assistants

Once AI works, it's called software!

Table of Contents

- 1 What you see
- 2 Software/Hardware Layer
- 3 A Large Language Mode
- 4 Instruction Tuning
- 5 Summary

 Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)

- Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)
- key ingredients: Parallelization of Models^{HPC}, Availability of Data^{DM}, Statistics and Machine Learning

- Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)
- key ingredients: Parallelization of Models^{HPC}, Availability of Data^{DM}, Statistics and Machine Learning
- chatbots today are software systems: an AI model (based on the transformer) is a central ingredient

- Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)
- key ingredients: Parallelization of Models^{HPC}, Availability of Data^{DM}, Statistics and Machine Learning
- chatbots today are software systems: an Al model (based on the transformer) is a central ingredient
- data protection, open science and scrutiny of insights got out of sight along the way

- Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)
- key ingredients: Parallelization of Models^{HPC}, Availability of Data^{DM}, Statistics and Machine Learning
- chatbots today are software systems: an Al model (based on the transformer) is a central ingredient
- data protection, open science and scrutiny of insights got out of sight along the way

- Machine Learning Methods for Natural Language Processing have experienced a Quantum Leap (2017/18)
- key ingredients: Parallelization of Models HPC, Availability of Data DM, Statistics and Machine Learning
- chatbots today are software systems: an Al model (based on the transformer) is a central ingredient
- data protection, open science and scrutiny of insights got out of sight along the way

Thank you for your attention! Feel free to ask questions, provide feedback or comments.

Bibliography (I)

- Devlin, J. et al. (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: *CoRR* abs/1810.04805. arXiv: 1810.04805. URL: http://arxiv.org/abs/1810.04805 (cit. on pp. 14–19).
- Hoffmann, J. et al. (2022). Training Compute-Optimal Large Language Models. arXiv: 2203.15556 [cs.CL]. URL: https://arxiv.org/abs/2203.15556 (cit. on p. 28).
- Prince, S. J. (2023). *Understanding deep learning*. MIT press. URL: https://udlbook.github.io/udlbook/ (cit. on p. 27).
- Radford, A., K. Narasimhan, et al. (2018). "Improving language understanding by generative pre-training". In: URL: https://web.archive.org/web/20210126024542/https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (cit. on pp. 20-26).

Bibliography (II)

Radford, A., J. Wu, et al. (2019). "Language models are unsupervised multitask learners". In: *OpenAl blog* 1.8, p. 9. URL: https:

//web.archive.org/web/20210206183945/https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf (cit. on pp. 20-26).

Vaswani, A. et al. (2017). "Attention is all you need". In: Advances in neural information processing systems 30 (cit. on p. 27).