

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

ChETEC-INFRA 5th General Assembly and Transnational Access User Meeting

Study of the $^{14}N(\alpha, \gamma)^{18}F$ reaction with a new jet gas target system at Felsenkeller

Supported by ChETEC-INFRA TA-Project 2340-3465

Anup Yadav

September 17, 2025

Institute of Radiation Physics · Division of Nuclear Physics · a.yadav@hzdr.de · www.hzdr.de

Astrophysical motivation

- Affects the production of ¹⁹F
- Key role in synthesis of ²²Ne via $^{14}N(\alpha, \gamma)^{18}F(\beta^{\pm})^{18}O(\alpha, \gamma)^{22}Ne$
- A major neutron source in massive stars via the $^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}$
- Aim: critical low-energy resonances (0.4 1.6 MeV) of $^{14}N(\alpha, \gamma)^{18}F$

Dresden Felsenkeller underground lab,

below 45 m of rock

Eur. Phys. J. A (2025) 61:19 https://doi.org/10.1140/epja/s10050-025-01490-z

Regular Article - Experimental Physics

5 MV Pelletron, 30 μA beams of ¹H±, ⁴He±, ¹²C±, ...

THE EUROPEAN
PHYSICAL JOURNAL A

Check for updates

The Felsenkeller shallow-underground laboratory for nuclear astrophysics

Daniel Bemmerer^{1,a}, Axel Boeltzig¹, Marcel Grieger¹, Katharina Gudat¹, Thomas Hensel^{2,1}, Eliana Masha¹, Max Osswald^{1,2}, Bruno Poser^{1,2}, Simon Rümmler^{1,2}, Konrad Schmidt¹, José Luis Taín³, Ariel Tarifeño-Saldivia^{3,4}, Steffen Turkat², Anup Yadav^{1,2}, Kai Zuber²

See talk by Konrad Schmidt, Thu 14:15

Felsenkeller Gas Target Setup: "Jet and Extended"

Mapping the Jet by "Laser interferometry"

Mach-Zehnder Interferometer

- Optical path length difference depends on:
 - Gas refractive index (for N₂: 1.0002985)
 - Density distribution
- Path length shift for N₂ (~ 110 nm)

CFD simulation and laser interferometry: jet of cylindrical nozzle

Interferogram

Laser interferometry: jet of slit nozzle from two perspective

Absolute jet thickness by energy loss with α particles

Counts

- Thickness up to 10¹⁸ cm⁻² achievable with realistic pressures
- Jet thickness increases linearly with pressure

Nitrogen jet target, without α -beam-induced γ -ray background

The $^{14}N(\alpha, \gamma)^{18}F$ reaction: excitation functions

Angular distribution: 573 keV resonance

Branching ratios of 4860 keV excitation level in ¹⁸F

E _γ [keV]	Literature (%)	
1726	4 ± 3	
1798	23 ± 7	
3779	8 ± 6	
3818	65 ± 11	

Angular distribution: 1136 keV resonance

Measured branching ratios of 5297 keV excitation level in ¹⁸F

$E_{\scriptscriptstyle{\gamma}}$ [keV]	Literature (%)	Present work (%)	
646	1.3 ± 0.3	-	
1940	5 ± 1	4.4 ± 0.3	
2775	78 ± 3	76.1 ± 0.6	
4177	7 ± 2	8.6 ± 0.5	
4361	9 ± 2	9.7 ± 0.2	

Angular distribution: 1618 keV resonance

Measured branching ratios of 5672 keV excitation level in ¹⁸F

E _γ [keV]	Literature (%)	Present work (%)	
2539	28.5 ± 0.2	28.4 ± 0.2	
2611*	4.0 ± 0.4	3.7 ± 0.14	
3572	0.4 ± 0.2	-	
3972	0.8 ± 0.3	1.2 ± 0.10	
4592	52 ± 3	52.9 ± 0.7	
4631	8.1 ± 0.7	7.5 ± 0.3	
5672	6.2 ± 0.4	5.9 ± 0.10	

Preliminary results

Resonance energy [keV]		Resonance strength ωγ [meV]	
this work	literature	this work	literature
580.3 ± 0.2 ¹	573 ± 3	$4.6 \pm 0.3 \times 10^{-2}$	$4.6 \pm 0.3 \times 10^{-2}$
1136.9 ± 0.2 ¹	1136 ± 3	$23.5 \pm 0.6 \times 10^{9}$	21.1 ± 0.3 × 10°
1618.1 ± 0.1 ¹	1618 ± 2	$4.55 \pm 0.07 \times 10^{2}$	$4.5 \pm 0.5 \times 10^{2}$

¹statistical uncertainty only

Summary and Outlook

- New gas target system will overcome challenges arising from solid target experiments
- Successful commissioning experiment with new gas target system
- Three $^{14}N(\alpha, \gamma)^{18}F$ resonances studied in high precision

Next step:

Thermonuclear reaction rate calculation

Thanks to the collaborators!

- F. Cavanna¹, C. Broggini¹,
- C. Bruno², A. Caciolli³,
- P. Corvisiero¹ R. Depalo⁴,
- F. Ferraro¹, R. Menegazzo¹,
- D. Piatti³, V. Rigato¹,
- J. Skowronski³, and Felsenkeller Team⁵
- 1 INFN, IT
- 2 Uni EDINBG, GB
- 3 Uni Padua, IT
- 4 Unimi, IT
- 5 HZDR

15

Resonance scans in $^{14}N(p, \gamma)^{15}O$

- For accelerator energy calibration
- To characterize the jet gas target

Detection setup: HPGe detectors

HPGe detectors: seven-cluster (EUROBALL) on the right, two triple-clusters on the left around the target.

Aabsolute efficiency measurements using the different radiation source and a 278 keV resonance in $^{14}N(p, \gamma)^{15}O$

Pressure Profile in Jet Gas Target Setup

Low energy resonance

Measured by Görres et. al., Resonance energy = $573 \pm 3 \text{ keV}$

20