This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA). ChETEC-INFRA 5th General Assembly and Transnational Access User Meeting # Study of the $^{14}N(\alpha, \gamma)^{18}F$ reaction with a new jet gas target system at Felsenkeller Supported by ChETEC-INFRA TA-Project 2340-3465 ## Anup Yadav September 17, 2025 Institute of Radiation Physics · Division of Nuclear Physics · a.yadav@hzdr.de · www.hzdr.de # Astrophysical motivation - Affects the production of ¹⁹F - Key role in synthesis of ²²Ne via $^{14}N(\alpha, \gamma)^{18}F(\beta^{\pm})^{18}O(\alpha, \gamma)^{22}Ne$ - A major neutron source in massive stars via the $^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}$ - Aim: critical low-energy resonances (0.4 1.6 MeV) of $^{14}N(\alpha, \gamma)^{18}F$ # Dresden Felsenkeller underground lab, below 45 m of rock Eur. Phys. J. A (2025) 61:19 https://doi.org/10.1140/epja/s10050-025-01490-z Regular Article - Experimental Physics 5 MV Pelletron, 30 μA beams of ¹H±, ⁴He±, ¹²C±, ... THE EUROPEAN PHYSICAL JOURNAL A Check for updates # The Felsenkeller shallow-underground laboratory for nuclear astrophysics Daniel Bemmerer^{1,a}, Axel Boeltzig¹, Marcel Grieger¹, Katharina Gudat¹, Thomas Hensel^{2,1}, Eliana Masha¹, Max Osswald^{1,2}, Bruno Poser^{1,2}, Simon Rümmler^{1,2}, Konrad Schmidt¹, José Luis Taín³, Ariel Tarifeño-Saldivia^{3,4}, Steffen Turkat², Anup Yadav^{1,2}, Kai Zuber² See talk by Konrad Schmidt, Thu 14:15 Felsenkeller Gas Target Setup: "Jet and Extended" # Mapping the Jet by "Laser interferometry" #### Mach-Zehnder Interferometer - Optical path length difference depends on: - Gas refractive index (for N₂: 1.0002985) - Density distribution - Path length shift for N₂ (~ 110 nm) # CFD simulation and laser interferometry: jet of cylindrical nozzle #### Interferogram # Laser interferometry: jet of slit nozzle from two perspective # Absolute jet thickness by energy loss with α particles Counts - Thickness up to 10¹⁸ cm⁻² achievable with realistic pressures - Jet thickness increases linearly with pressure # Nitrogen jet target, without α -beam-induced γ -ray background # The $^{14}N(\alpha, \gamma)^{18}F$ reaction: excitation functions # Angular distribution: 573 keV resonance # Branching ratios of 4860 keV excitation level in ¹⁸F | E _γ [keV] | Literature
(%) | | |----------------------|-------------------|--| | 1726 | 4 ± 3 | | | 1798 | 23 ± 7 | | | 3779 | 8 ± 6 | | | 3818 | 65 ± 11 | | # Angular distribution: 1136 keV resonance # Measured branching ratios of 5297 keV excitation level in ¹⁸F | $E_{\scriptscriptstyle{\gamma}}$ [keV] | Literature
(%) | Present
work
(%) | | |--|-------------------|------------------------|--| | 646 | 1.3 ± 0.3 | - | | | 1940 | 5 ± 1 | 4.4 ± 0.3 | | | 2775 | 78 ± 3 | 76.1 ± 0.6 | | | 4177 | 7 ± 2 | 8.6 ± 0.5 | | | 4361 | 9 ± 2 | 9.7 ± 0.2 | | ## Angular distribution: 1618 keV resonance Measured branching ratios of 5672 keV excitation level in ¹⁸F | E _γ [keV] | Literature
(%) | Present
work
(%) | | |----------------------|-------------------|------------------------|--| | 2539 | 28.5 ± 0.2 | 28.4 ± 0.2 | | | 2611* | 4.0 ± 0.4 | 3.7 ± 0.14 | | | 3572 | 0.4 ± 0.2 | - | | | 3972 | 0.8 ± 0.3 | 1.2 ± 0.10 | | | 4592 | 52 ± 3 | 52.9 ± 0.7 | | | 4631 | 8.1 ± 0.7 | 7.5 ± 0.3 | | | 5672 | 6.2 ± 0.4 | 5.9 ± 0.10 | | # Preliminary results | Resonance energy [keV] | | Resonance strength ωγ [meV] | | |---------------------------|------------|-------------------------------|------------------------------| | this work | literature | this work | literature | | 580.3 ± 0.2 ¹ | 573 ± 3 | $4.6 \pm 0.3 \times 10^{-2}$ | $4.6 \pm 0.3 \times 10^{-2}$ | | 1136.9 ± 0.2 ¹ | 1136 ± 3 | $23.5 \pm 0.6 \times 10^{9}$ | 21.1 ± 0.3 × 10° | | 1618.1 ± 0.1 ¹ | 1618 ± 2 | $4.55 \pm 0.07 \times 10^{2}$ | $4.5 \pm 0.5 \times 10^{2}$ | ¹statistical uncertainty only # Summary and Outlook - New gas target system will overcome challenges arising from solid target experiments - Successful commissioning experiment with new gas target system - Three $^{14}N(\alpha, \gamma)^{18}F$ resonances studied in high precision ### **Next step:** Thermonuclear reaction rate calculation #### Thanks to the collaborators! - F. Cavanna¹, C. Broggini¹, - C. Bruno², A. Caciolli³, - P. Corvisiero¹ R. Depalo⁴, - F. Ferraro¹, R. Menegazzo¹, - D. Piatti³, V. Rigato¹, - J. Skowronski³, and Felsenkeller Team⁵ - 1 INFN, IT - 2 Uni EDINBG, GB - 3 Uni Padua, IT - 4 Unimi, IT - 5 HZDR 15 # Resonance scans in $^{14}N(p, \gamma)^{15}O$ - For accelerator energy calibration - To characterize the jet gas target # Detection setup: HPGe detectors HPGe detectors: seven-cluster (EUROBALL) on the right, two triple-clusters on the left around the target. Aabsolute efficiency measurements using the different radiation source and a 278 keV resonance in $^{14}N(p, \gamma)^{15}O$ # Pressure Profile in Jet Gas Target Setup ## Low energy resonance Measured by Görres et. al., Resonance energy = $573 \pm 3 \text{ keV}$ 20